Matches in SemOpenAlex for { <https://semopenalex.org/work/W2284873887> ?p ?o ?g. }
- W2284873887 endingPage "184" @default.
- W2284873887 startingPage "184" @default.
- W2284873887 abstract "High spatial resolution estimating of exposure to particulate matter 2.5 (PM2.5) is currently very limited in China. This study uses the newly released nationwide, hourly PM2.5 concentrations to create a nationwide, geographically weighted regression (GWR) model to estimate ground-level PM2.5 concentrations in China. A3 km resolution aerosol optical depth (AOD) product from MODIS is used as the primary predictor. Fire emissions detected by MODIS fire count were considered in the model development process. Additionally, meteorological features were used as covariates in the model to improve the estimation of ground-level PM2.5 concentrations. The model performed well and explained 81% of the daily PM2.5 concentration variations in model predictions, and the cross validations R2 is 0.79. The cross-validated root mean squared error (RMSE) of the model was 18.6 μg/m3.Annual PM2.5 concentrations retrieved by the MODIS 3 km AOD product indicated that most of the residential community areas exceeded the new annual Chinese PM2.5 National Standard level 2. Estimated high-resolution national-scale daily PM2.5 maps are useful to identify severe air pollution episodes and determine health risk assessments. These results suggest that this approach is useful for estimating large-scale ground-level PM2.5 distributions, especially for regions without PM monitoring sites." @default.
- W2284873887 created "2016-06-24" @default.
- W2284873887 creator A5001177176 @default.
- W2284873887 creator A5011225601 @default.
- W2284873887 creator A5026187066 @default.
- W2284873887 creator A5030605206 @default.
- W2284873887 creator A5034729964 @default.
- W2284873887 creator A5053593429 @default.
- W2284873887 date "2016-02-26" @default.
- W2284873887 modified "2023-10-16" @default.
- W2284873887 title "National-Scale Estimates of Ground-Level PM2.5 Concentration in China Using Geographically Weighted Regression Based on 3 km Resolution MODIS AOD" @default.
- W2284873887 cites W1173523477 @default.
- W2284873887 cites W1606767976 @default.
- W2284873887 cites W1941932290 @default.
- W2284873887 cites W1966272358 @default.
- W2284873887 cites W1972865823 @default.
- W2284873887 cites W1987098847 @default.
- W2284873887 cites W1987337512 @default.
- W2284873887 cites W1990797640 @default.
- W2284873887 cites W1997535938 @default.
- W2284873887 cites W2000109687 @default.
- W2284873887 cites W2013519992 @default.
- W2284873887 cites W2024842775 @default.
- W2284873887 cites W2029401079 @default.
- W2284873887 cites W2031528200 @default.
- W2284873887 cites W2047120335 @default.
- W2284873887 cites W2054219576 @default.
- W2284873887 cites W2054806977 @default.
- W2284873887 cites W2066281540 @default.
- W2284873887 cites W2069389213 @default.
- W2284873887 cites W2070861023 @default.
- W2284873887 cites W2075924373 @default.
- W2284873887 cites W2081990052 @default.
- W2284873887 cites W2096118432 @default.
- W2284873887 cites W2103977502 @default.
- W2284873887 cites W2108162680 @default.
- W2284873887 cites W2119362352 @default.
- W2284873887 cites W2158143121 @default.
- W2284873887 cites W2158426942 @default.
- W2284873887 cites W2162982697 @default.
- W2284873887 cites W2166604768 @default.
- W2284873887 cites W2261936125 @default.
- W2284873887 cites W2297827415 @default.
- W2284873887 cites W2312602772 @default.
- W2284873887 cites W2330430040 @default.
- W2284873887 cites W4255562583 @default.
- W2284873887 cites W960576833 @default.
- W2284873887 doi "https://doi.org/10.3390/rs8030184" @default.
- W2284873887 hasPublicationYear "2016" @default.
- W2284873887 type Work @default.
- W2284873887 sameAs 2284873887 @default.
- W2284873887 citedByCount "119" @default.
- W2284873887 countsByYear W22848738872016 @default.
- W2284873887 countsByYear W22848738872017 @default.
- W2284873887 countsByYear W22848738872018 @default.
- W2284873887 countsByYear W22848738872019 @default.
- W2284873887 countsByYear W22848738872020 @default.
- W2284873887 countsByYear W22848738872021 @default.
- W2284873887 countsByYear W22848738872022 @default.
- W2284873887 countsByYear W22848738872023 @default.
- W2284873887 crossrefType "journal-article" @default.
- W2284873887 hasAuthorship W2284873887A5001177176 @default.
- W2284873887 hasAuthorship W2284873887A5011225601 @default.
- W2284873887 hasAuthorship W2284873887A5026187066 @default.
- W2284873887 hasAuthorship W2284873887A5030605206 @default.
- W2284873887 hasAuthorship W2284873887A5034729964 @default.
- W2284873887 hasAuthorship W2284873887A5053593429 @default.
- W2284873887 hasBestOaLocation W22848738871 @default.
- W2284873887 hasConcept C105795698 @default.
- W2284873887 hasConcept C127313418 @default.
- W2284873887 hasConcept C139945424 @default.
- W2284873887 hasConcept C153294291 @default.
- W2284873887 hasConcept C178790620 @default.
- W2284873887 hasConcept C185592680 @default.
- W2284873887 hasConcept C205649164 @default.
- W2284873887 hasConcept C2778755073 @default.
- W2284873887 hasConcept C2910321205 @default.
- W2284873887 hasConcept C33923547 @default.
- W2284873887 hasConcept C39432304 @default.
- W2284873887 hasConcept C49204034 @default.
- W2284873887 hasConcept C559116025 @default.
- W2284873887 hasConcept C58640448 @default.
- W2284873887 hasConceptScore W2284873887C105795698 @default.
- W2284873887 hasConceptScore W2284873887C127313418 @default.
- W2284873887 hasConceptScore W2284873887C139945424 @default.
- W2284873887 hasConceptScore W2284873887C153294291 @default.
- W2284873887 hasConceptScore W2284873887C178790620 @default.
- W2284873887 hasConceptScore W2284873887C185592680 @default.
- W2284873887 hasConceptScore W2284873887C205649164 @default.
- W2284873887 hasConceptScore W2284873887C2778755073 @default.
- W2284873887 hasConceptScore W2284873887C2910321205 @default.
- W2284873887 hasConceptScore W2284873887C33923547 @default.
- W2284873887 hasConceptScore W2284873887C39432304 @default.
- W2284873887 hasConceptScore W2284873887C49204034 @default.
- W2284873887 hasConceptScore W2284873887C559116025 @default.
- W2284873887 hasConceptScore W2284873887C58640448 @default.
- W2284873887 hasFunder F4320321001 @default.
- W2284873887 hasIssue "3" @default.