Matches in SemOpenAlex for { <https://semopenalex.org/work/W2285280223> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2285280223 abstract "between benign and cancerous nodules, and ii) quantitatively predict risk of lung cancer incidence. Methods: Using data and images from the NLST, we performed post hoc nested case-control analyses. The first analysis was conducted to identify diagnostic quantitative imaging features that differentiate between malignant tumors and benign nodules. This study included 88 incidence lung cancer cases diagnosed at the first follow-up interval (T1) and 172 “controls” that had a noduleþ scan at T1 that was not lung cancer. The second analysis was conducted to identify predictive quantitative imaging features that are predictive of lung cancer risk. This study utilized baseline scans (T0) from 74 subjects who developed an incidence lung cancer in follow-up intervals and 125 “controls” that had a noduleþ result in follow-up intervals that was not lung cancer. The LDCT scans were subjected to an in-house “Radiomic Pipeline” that converts images to mineable data (>400 quantitative features). Two classes of features were extracted: semantic and agnostic. Semantic features are commonly used in the radiology lexicon to describe regions of interest. Agnostic features are mathematically extracted quantitative descriptors that capture lesion heterogeneity. Separate statistical analyses were performed for the diagnostic and predictive features. Univariable analyses and false discovery rate (FDR) were utilized to identify which were features were statistically significant. To generate a parsimonious model, we performed a backward elimination process using a 0.1 threshold for inclusion. Results: Although nodule size has diagnostic utility, especially among the largest nodules, >80% of cases and controls had nodules <15 cm. For size alone, we found a modest AUC of 0.79 when nodules were <15 cm. We sought to improve the diagnostic capability of size by adding imaging features. Univariable analyses revealed that 17 of the features were significantly different between cases and controls. Backward elimination process revealed a model with 3 imaging features (radius of smallest enclosing ellipse, radius of largest enclosed ellipse, and tumor thickness-pixel) that yielded an AUC of 0.88; and a model with those 3 features, size, and demographics yields an AUC of 0.89. For the risk prediction analysis, univariable analyses revealed that 10 of the features were significantly associated with lung cancer risk which remained significant when included in a single model including demographics/risk factors. Backward elimination process identified a model with six imaging features (concavity, border definition, attachment to vessel, perinodule emphysema, perinodule fibrosis, nodules in both lungs) and demographics yielding an AUC of 0.87 compared to 0.58 for demographics alone. Conclusions: These results demonstrate that we can improve the diagnostic utility of size alone by including additional imaging features. Moreover, these data provide strong and compelling evidence for the utility of imaging features for risk prediction." @default.
- W2285280223 created "2016-06-24" @default.
- W2285280223 creator A5005862221 @default.
- W2285280223 creator A5012399743 @default.
- W2285280223 creator A5034744182 @default.
- W2285280223 creator A5035200799 @default.
- W2285280223 creator A5056929362 @default.
- W2285280223 creator A5057596673 @default.
- W2285280223 creator A5063990713 @default.
- W2285280223 creator A5087267048 @default.
- W2285280223 date "2016-02-01" @default.
- W2285280223 modified "2023-10-13" @default.
- W2285280223 title "Myxomavirus (MYXV) therapy for small cell lung cancer (SCLC) using patient samples and a genetically engineered SCLC mouse model" @default.
- W2285280223 doi "https://doi.org/10.1016/j.jtho.2015.12.071" @default.
- W2285280223 hasPublicationYear "2016" @default.
- W2285280223 type Work @default.
- W2285280223 sameAs 2285280223 @default.
- W2285280223 citedByCount "0" @default.
- W2285280223 crossrefType "journal-article" @default.
- W2285280223 hasAuthorship W2285280223A5005862221 @default.
- W2285280223 hasAuthorship W2285280223A5012399743 @default.
- W2285280223 hasAuthorship W2285280223A5034744182 @default.
- W2285280223 hasAuthorship W2285280223A5035200799 @default.
- W2285280223 hasAuthorship W2285280223A5056929362 @default.
- W2285280223 hasAuthorship W2285280223A5057596673 @default.
- W2285280223 hasAuthorship W2285280223A5063990713 @default.
- W2285280223 hasAuthorship W2285280223A5087267048 @default.
- W2285280223 hasBestOaLocation W22852802231 @default.
- W2285280223 hasConcept C121608353 @default.
- W2285280223 hasConcept C126322002 @default.
- W2285280223 hasConcept C126838900 @default.
- W2285280223 hasConcept C142724271 @default.
- W2285280223 hasConcept C151730666 @default.
- W2285280223 hasConcept C2776256026 @default.
- W2285280223 hasConcept C2776731575 @default.
- W2285280223 hasConcept C2777405583 @default.
- W2285280223 hasConcept C2777714996 @default.
- W2285280223 hasConcept C2989005 @default.
- W2285280223 hasConcept C44249647 @default.
- W2285280223 hasConcept C71924100 @default.
- W2285280223 hasConcept C86803240 @default.
- W2285280223 hasConceptScore W2285280223C121608353 @default.
- W2285280223 hasConceptScore W2285280223C126322002 @default.
- W2285280223 hasConceptScore W2285280223C126838900 @default.
- W2285280223 hasConceptScore W2285280223C142724271 @default.
- W2285280223 hasConceptScore W2285280223C151730666 @default.
- W2285280223 hasConceptScore W2285280223C2776256026 @default.
- W2285280223 hasConceptScore W2285280223C2776731575 @default.
- W2285280223 hasConceptScore W2285280223C2777405583 @default.
- W2285280223 hasConceptScore W2285280223C2777714996 @default.
- W2285280223 hasConceptScore W2285280223C2989005 @default.
- W2285280223 hasConceptScore W2285280223C44249647 @default.
- W2285280223 hasConceptScore W2285280223C71924100 @default.
- W2285280223 hasConceptScore W2285280223C86803240 @default.
- W2285280223 hasLocation W22852802231 @default.
- W2285280223 hasOpenAccess W2285280223 @default.
- W2285280223 hasPrimaryLocation W22852802231 @default.
- W2285280223 hasRelatedWork W1975432528 @default.
- W2285280223 hasRelatedWork W2106519499 @default.
- W2285280223 hasRelatedWork W2114175038 @default.
- W2285280223 hasRelatedWork W2379366120 @default.
- W2285280223 hasRelatedWork W2524907029 @default.
- W2285280223 hasRelatedWork W2573554246 @default.
- W2285280223 hasRelatedWork W2900655718 @default.
- W2285280223 hasRelatedWork W2945668544 @default.
- W2285280223 hasRelatedWork W2951970255 @default.
- W2285280223 hasRelatedWork W2972534590 @default.
- W2285280223 hasRelatedWork W3008456045 @default.
- W2285280223 hasRelatedWork W3033741287 @default.
- W2285280223 hasRelatedWork W3110453023 @default.
- W2285280223 hasRelatedWork W3111623079 @default.
- W2285280223 hasRelatedWork W3111937690 @default.
- W2285280223 hasRelatedWork W3156775903 @default.
- W2285280223 hasRelatedWork W3186965037 @default.
- W2285280223 hasRelatedWork W3190985924 @default.
- W2285280223 hasRelatedWork W3196903264 @default.
- W2285280223 hasRelatedWork W3207214630 @default.
- W2285280223 isParatext "false" @default.
- W2285280223 isRetracted "false" @default.
- W2285280223 magId "2285280223" @default.
- W2285280223 workType "article" @default.