Matches in SemOpenAlex for { <https://semopenalex.org/work/W2285717070> ?p ?o ?g. }
- W2285717070 endingPage "191" @default.
- W2285717070 startingPage "184" @default.
- W2285717070 abstract "Wide field view (WFV) sensor on board the Chinese GF-1, the first satellite of the China High-resolution Earth Observation System, is acquiring multi-spectral data with decametric spatial resolution, high temporal resolution and wide coverage, which are valuable data sources for environment monitoring. The objective of this study is to develop a general and reliable fractional vegetation cover (FVC) estimation algorithm for GF-1 WFV data under various land surface conditions. The algorithm is expected to estimate FVC from GF-1 WFV reflectance data with spatial resolution of 16 m and temporal resolution of four dates. The proposed algorithm is based on training back propagation neural networks (NNs) using PROSPECT + SAIL radiative transfer model simulations for GF-1 WFV canopy reflectance and corresponding FVC values. Green, red and near-infrared bands' reflectances of GF-1 WFV data are the input variables of the NNs, as well as the corresponding FVC is the output variable, and finally 842,400 simulated samples covering various land surface conditions are used for training the NNs. A case study in Weichang County of China, having abundant land cover types, was conducted to validate the performance of the proposed FVC estimation algorithm for GF-1 WFV data. The validation results showed that the proposed algorithm worked effectively and generated reasonable FVC estimates with R2 = 0.790 and root mean square error of 0.073 based on the field survey data. The proposed algorithm can be operated without prior knowledge on the land cover and has the potential for routine production of high quality FVC products using GF-1 WFV surface reflectance data." @default.
- W2285717070 created "2016-06-24" @default.
- W2285717070 creator A5009327702 @default.
- W2285717070 creator A5011417699 @default.
- W2285717070 creator A5014357267 @default.
- W2285717070 creator A5026825966 @default.
- W2285717070 creator A5045314681 @default.
- W2285717070 creator A5053258235 @default.
- W2285717070 creator A5054276054 @default.
- W2285717070 creator A5063493372 @default.
- W2285717070 creator A5079396291 @default.
- W2285717070 date "2016-05-01" @default.
- W2285717070 modified "2023-10-16" @default.
- W2285717070 title "Fractional vegetation cover estimation algorithm for Chinese GF-1 wide field view data" @default.
- W2285717070 cites W1930970760 @default.
- W2285717070 cites W1964615151 @default.
- W2285717070 cites W1969337051 @default.
- W2285717070 cites W1978160572 @default.
- W2285717070 cites W1982837869 @default.
- W2285717070 cites W1988797124 @default.
- W2285717070 cites W2002504308 @default.
- W2285717070 cites W2007134419 @default.
- W2285717070 cites W2009000000 @default.
- W2285717070 cites W2013061102 @default.
- W2285717070 cites W2023965263 @default.
- W2285717070 cites W2026470773 @default.
- W2285717070 cites W2029602137 @default.
- W2285717070 cites W2032393651 @default.
- W2285717070 cites W2039065141 @default.
- W2285717070 cites W2043273487 @default.
- W2285717070 cites W2056688006 @default.
- W2285717070 cites W2065051496 @default.
- W2285717070 cites W2066612219 @default.
- W2285717070 cites W2068492232 @default.
- W2285717070 cites W2069358120 @default.
- W2285717070 cites W2069988625 @default.
- W2285717070 cites W2076196252 @default.
- W2285717070 cites W2081887174 @default.
- W2285717070 cites W2086974896 @default.
- W2285717070 cites W2093172807 @default.
- W2285717070 cites W2094677081 @default.
- W2285717070 cites W2100449962 @default.
- W2285717070 cites W2101010747 @default.
- W2285717070 cites W2109965565 @default.
- W2285717070 cites W2116370245 @default.
- W2285717070 cites W2121025745 @default.
- W2285717070 cites W2123579413 @default.
- W2285717070 cites W2128274720 @default.
- W2285717070 cites W2136181038 @default.
- W2285717070 cites W2136408258 @default.
- W2285717070 cites W2146205032 @default.
- W2285717070 cites W2155096269 @default.
- W2285717070 cites W2157131762 @default.
- W2285717070 cites W2163886442 @default.
- W2285717070 cites W2166516660 @default.
- W2285717070 cites W2172063876 @default.
- W2285717070 cites W2522575824 @default.
- W2285717070 cites W3125537303 @default.
- W2285717070 cites W61452412 @default.
- W2285717070 doi "https://doi.org/10.1016/j.rse.2016.02.019" @default.
- W2285717070 hasPublicationYear "2016" @default.
- W2285717070 type Work @default.
- W2285717070 sameAs 2285717070 @default.
- W2285717070 citedByCount "157" @default.
- W2285717070 countsByYear W22857170702016 @default.
- W2285717070 countsByYear W22857170702017 @default.
- W2285717070 countsByYear W22857170702018 @default.
- W2285717070 countsByYear W22857170702019 @default.
- W2285717070 countsByYear W22857170702020 @default.
- W2285717070 countsByYear W22857170702021 @default.
- W2285717070 countsByYear W22857170702022 @default.
- W2285717070 countsByYear W22857170702023 @default.
- W2285717070 crossrefType "journal-article" @default.
- W2285717070 hasAuthorship W2285717070A5009327702 @default.
- W2285717070 hasAuthorship W2285717070A5011417699 @default.
- W2285717070 hasAuthorship W2285717070A5014357267 @default.
- W2285717070 hasAuthorship W2285717070A5026825966 @default.
- W2285717070 hasAuthorship W2285717070A5045314681 @default.
- W2285717070 hasAuthorship W2285717070A5053258235 @default.
- W2285717070 hasAuthorship W2285717070A5054276054 @default.
- W2285717070 hasAuthorship W2285717070A5063493372 @default.
- W2285717070 hasAuthorship W2285717070A5079396291 @default.
- W2285717070 hasConcept C105795698 @default.
- W2285717070 hasConcept C11413529 @default.
- W2285717070 hasConcept C114614502 @default.
- W2285717070 hasConcept C121332964 @default.
- W2285717070 hasConcept C127313418 @default.
- W2285717070 hasConcept C1276947 @default.
- W2285717070 hasConcept C139945424 @default.
- W2285717070 hasConcept C142724271 @default.
- W2285717070 hasConcept C154945302 @default.
- W2285717070 hasConcept C156350748 @default.
- W2285717070 hasConcept C18903297 @default.
- W2285717070 hasConcept C19269812 @default.
- W2285717070 hasConcept C205372480 @default.
- W2285717070 hasConcept C2776133958 @default.
- W2285717070 hasConcept C2780648208 @default.
- W2285717070 hasConcept C33923547 @default.