Matches in SemOpenAlex for { <https://semopenalex.org/work/W2285725912> ?p ?o ?g. }
- W2285725912 endingPage "637" @default.
- W2285725912 startingPage "631" @default.
- W2285725912 abstract "One of the most widely used techniques to determine the mechanical properties of cartilage is based on indentation tests and interpretation of the obtained force-time or displacement-time data. In the current computational approaches, one needs to simulate the indentation test with finite element models and use an optimization algorithm to estimate the mechanical properties of cartilage. The modeling procedure is cumbersome, and the simulations need to be repeated for every new experiment. For the first time, we propose a method for fast and accurate estimation of the mechanical and physical properties of cartilage as a poroelastic material with the aid of artificial neural networks. In our study, we used finite element models to simulate the indentation for poroelastic materials with wide combinations of mechanical and physical properties. The obtained force-time curves are then divided into three parts: the first two parts of the data is used for training and validation of an artificial neural network, while the third part is used for testing the trained network. The trained neural network receives the force-time curves as the input and provides the properties of cartilage as the output. We observed that the trained network could accurately predict the properties of cartilage within the range of properties for which it was trained. The mechanical and physical properties of cartilage could therefore be estimated very fast, since no additional finite element modeling is required once the neural network is trained. The robustness of the trained artificial neural network in determining the properties of cartilage based on noisy force-time data was assessed by introducing noise to the simulated force-time data. We found that the training procedure could be optimized so as to maximize the robustness of the neural network against noisy force-time data." @default.
- W2285725912 created "2016-06-24" @default.
- W2285725912 creator A5001472780 @default.
- W2285725912 creator A5002489074 @default.
- W2285725912 creator A5014984778 @default.
- W2285725912 creator A5085851098 @default.
- W2285725912 date "2016-03-01" @default.
- W2285725912 modified "2023-09-30" @default.
- W2285725912 title "Determination of the mechanical and physical properties of cartilage by coupling poroelastic-based finite element models of indentation with artificial neural networks" @default.
- W2285725912 cites W1966714927 @default.
- W2285725912 cites W1967169421 @default.
- W2285725912 cites W1968943468 @default.
- W2285725912 cites W1970071437 @default.
- W2285725912 cites W1976883588 @default.
- W2285725912 cites W1979670824 @default.
- W2285725912 cites W1983199726 @default.
- W2285725912 cites W1991993108 @default.
- W2285725912 cites W1997593486 @default.
- W2285725912 cites W1999640275 @default.
- W2285725912 cites W2000658986 @default.
- W2285725912 cites W2003743029 @default.
- W2285725912 cites W2011038175 @default.
- W2285725912 cites W2014137292 @default.
- W2285725912 cites W2019554563 @default.
- W2285725912 cites W2026762975 @default.
- W2285725912 cites W2030585912 @default.
- W2285725912 cites W2033043724 @default.
- W2285725912 cites W2036395758 @default.
- W2285725912 cites W2046268438 @default.
- W2285725912 cites W2050374468 @default.
- W2285725912 cites W2075140947 @default.
- W2285725912 cites W2077881841 @default.
- W2285725912 cites W2081119898 @default.
- W2285725912 cites W2083182475 @default.
- W2285725912 cites W2087418982 @default.
- W2285725912 cites W2095632231 @default.
- W2285725912 cites W2113065594 @default.
- W2285725912 cites W2119972969 @default.
- W2285725912 cites W2121992912 @default.
- W2285725912 cites W2126870355 @default.
- W2285725912 cites W2135616992 @default.
- W2285725912 cites W2141762451 @default.
- W2285725912 cites W2143848998 @default.
- W2285725912 cites W2151571566 @default.
- W2285725912 cites W2168448281 @default.
- W2285725912 doi "https://doi.org/10.1016/j.jbiomech.2015.12.014" @default.
- W2285725912 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26944689" @default.
- W2285725912 hasPublicationYear "2016" @default.
- W2285725912 type Work @default.
- W2285725912 sameAs 2285725912 @default.
- W2285725912 citedByCount "14" @default.
- W2285725912 countsByYear W22857259122016 @default.
- W2285725912 countsByYear W22857259122017 @default.
- W2285725912 countsByYear W22857259122018 @default.
- W2285725912 countsByYear W22857259122019 @default.
- W2285725912 countsByYear W22857259122020 @default.
- W2285725912 countsByYear W22857259122022 @default.
- W2285725912 countsByYear W22857259122023 @default.
- W2285725912 crossrefType "journal-article" @default.
- W2285725912 hasAuthorship W2285725912A5001472780 @default.
- W2285725912 hasAuthorship W2285725912A5002489074 @default.
- W2285725912 hasAuthorship W2285725912A5014984778 @default.
- W2285725912 hasAuthorship W2285725912A5085851098 @default.
- W2285725912 hasConcept C104317684 @default.
- W2285725912 hasConcept C105569014 @default.
- W2285725912 hasConcept C107551265 @default.
- W2285725912 hasConcept C127413603 @default.
- W2285725912 hasConcept C135628077 @default.
- W2285725912 hasConcept C136229726 @default.
- W2285725912 hasConcept C154945302 @default.
- W2285725912 hasConcept C15744967 @default.
- W2285725912 hasConcept C159985019 @default.
- W2285725912 hasConcept C181965411 @default.
- W2285725912 hasConcept C185592680 @default.
- W2285725912 hasConcept C192562407 @default.
- W2285725912 hasConcept C2780902562 @default.
- W2285725912 hasConcept C41008148 @default.
- W2285725912 hasConcept C50644808 @default.
- W2285725912 hasConcept C542102704 @default.
- W2285725912 hasConcept C55493867 @default.
- W2285725912 hasConcept C63479239 @default.
- W2285725912 hasConcept C6648577 @default.
- W2285725912 hasConcept C66938386 @default.
- W2285725912 hasConceptScore W2285725912C104317684 @default.
- W2285725912 hasConceptScore W2285725912C105569014 @default.
- W2285725912 hasConceptScore W2285725912C107551265 @default.
- W2285725912 hasConceptScore W2285725912C127413603 @default.
- W2285725912 hasConceptScore W2285725912C135628077 @default.
- W2285725912 hasConceptScore W2285725912C136229726 @default.
- W2285725912 hasConceptScore W2285725912C154945302 @default.
- W2285725912 hasConceptScore W2285725912C15744967 @default.
- W2285725912 hasConceptScore W2285725912C159985019 @default.
- W2285725912 hasConceptScore W2285725912C181965411 @default.
- W2285725912 hasConceptScore W2285725912C185592680 @default.
- W2285725912 hasConceptScore W2285725912C192562407 @default.
- W2285725912 hasConceptScore W2285725912C2780902562 @default.
- W2285725912 hasConceptScore W2285725912C41008148 @default.
- W2285725912 hasConceptScore W2285725912C50644808 @default.