Matches in SemOpenAlex for { <https://semopenalex.org/work/W2285826785> ?p ?o ?g. }
- W2285826785 endingPage "25" @default.
- W2285826785 startingPage "25" @default.
- W2285826785 abstract "1,1,1,2,3,3,3-Heptafluoropropane (R227ea) is a good refrigerant that reduces greenhouse effects and ozone depletion. In practical applications, we usually have to know the compressed liquid densities at different temperatures and pressures. However, the measurement requires a series of complex apparatus and operations, wasting too much manpower and resources. To solve these problems, here, Song and Mason equation, support vector machine (SVM), and artificial neural networks (ANNs) were used to develop theoretical and machine learning models, respectively, in order to predict the compressed liquid densities of R227ea with only the inputs of temperatures and pressures. Results show that compared with the Song and Mason equation, appropriate machine learning models trained with precise experimental samples have better predicted results, with lower root mean square errors (RMSEs) (e.g., the RMSE of the SVM trained with data provided by Fedele et al. [1] is 0.11, while the RMSE of the Song and Mason equation is 196.26). Compared to advanced conventional measurements, knowledge-based machine learning models are proved to be more time-saving and user-friendly." @default.
- W2285826785 created "2016-06-24" @default.
- W2285826785 creator A5007209836 @default.
- W2285826785 creator A5009617931 @default.
- W2285826785 creator A5019560977 @default.
- W2285826785 creator A5038729392 @default.
- W2285826785 creator A5053337874 @default.
- W2285826785 creator A5073936760 @default.
- W2285826785 date "2016-01-19" @default.
- W2285826785 modified "2023-09-26" @default.
- W2285826785 title "Comparative Study on Theoretical and Machine Learning Methods for Acquiring Compressed Liquid Densities of 1,1,1,2,3,3,3-Heptafluoropropane (R227ea) via Song and Mason Equation, Support Vector Machine, and Artificial Neural Networks" @default.
- W2285826785 cites W1490180010 @default.
- W2285826785 cites W1595545155 @default.
- W2285826785 cites W1845618662 @default.
- W2285826785 cites W1962261421 @default.
- W2285826785 cites W1965903654 @default.
- W2285826785 cites W1969678377 @default.
- W2285826785 cites W1977792281 @default.
- W2285826785 cites W1980810939 @default.
- W2285826785 cites W2006357210 @default.
- W2285826785 cites W2011720104 @default.
- W2285826785 cites W2017004114 @default.
- W2285826785 cites W2022962792 @default.
- W2285826785 cites W2028501442 @default.
- W2285826785 cites W2033193574 @default.
- W2285826785 cites W2033201034 @default.
- W2285826785 cites W2037404507 @default.
- W2285826785 cites W2041436074 @default.
- W2285826785 cites W2043709239 @default.
- W2285826785 cites W2047571088 @default.
- W2285826785 cites W2054426034 @default.
- W2285826785 cites W2056052206 @default.
- W2285826785 cites W2058464852 @default.
- W2285826785 cites W2060219580 @default.
- W2285826785 cites W2069313863 @default.
- W2285826785 cites W2069854832 @default.
- W2285826785 cites W2073610295 @default.
- W2285826785 cites W2083990481 @default.
- W2285826785 cites W2095739681 @default.
- W2285826785 cites W2103956991 @default.
- W2285826785 cites W2108595651 @default.
- W2285826785 cites W2115813749 @default.
- W2285826785 cites W2129226513 @default.
- W2285826785 cites W2149723649 @default.
- W2285826785 cites W2153635508 @default.
- W2285826785 cites W2161336914 @default.
- W2285826785 cites W2168088318 @default.
- W2285826785 cites W2262931731 @default.
- W2285826785 cites W2304325159 @default.
- W2285826785 cites W231446412 @default.
- W2285826785 cites W4249028950 @default.
- W2285826785 cites W4376595336 @default.
- W2285826785 cites W49260112 @default.
- W2285826785 cites W94658883 @default.
- W2285826785 doi "https://doi.org/10.3390/app6010025" @default.
- W2285826785 hasPublicationYear "2016" @default.
- W2285826785 type Work @default.
- W2285826785 sameAs 2285826785 @default.
- W2285826785 citedByCount "25" @default.
- W2285826785 countsByYear W22858267852016 @default.
- W2285826785 countsByYear W22858267852017 @default.
- W2285826785 countsByYear W22858267852018 @default.
- W2285826785 countsByYear W22858267852019 @default.
- W2285826785 countsByYear W22858267852021 @default.
- W2285826785 countsByYear W22858267852022 @default.
- W2285826785 crossrefType "journal-article" @default.
- W2285826785 hasAuthorship W2285826785A5007209836 @default.
- W2285826785 hasAuthorship W2285826785A5009617931 @default.
- W2285826785 hasAuthorship W2285826785A5019560977 @default.
- W2285826785 hasAuthorship W2285826785A5038729392 @default.
- W2285826785 hasAuthorship W2285826785A5053337874 @default.
- W2285826785 hasAuthorship W2285826785A5073936760 @default.
- W2285826785 hasBestOaLocation W22858267851 @default.
- W2285826785 hasConcept C105795698 @default.
- W2285826785 hasConcept C11413529 @default.
- W2285826785 hasConcept C119857082 @default.
- W2285826785 hasConcept C12267149 @default.
- W2285826785 hasConcept C127413603 @default.
- W2285826785 hasConcept C131097465 @default.
- W2285826785 hasConcept C139945424 @default.
- W2285826785 hasConcept C154945302 @default.
- W2285826785 hasConcept C199499590 @default.
- W2285826785 hasConcept C33923547 @default.
- W2285826785 hasConcept C41008148 @default.
- W2285826785 hasConcept C50644808 @default.
- W2285826785 hasConcept C78519656 @default.
- W2285826785 hasConceptScore W2285826785C105795698 @default.
- W2285826785 hasConceptScore W2285826785C11413529 @default.
- W2285826785 hasConceptScore W2285826785C119857082 @default.
- W2285826785 hasConceptScore W2285826785C12267149 @default.
- W2285826785 hasConceptScore W2285826785C127413603 @default.
- W2285826785 hasConceptScore W2285826785C131097465 @default.
- W2285826785 hasConceptScore W2285826785C139945424 @default.
- W2285826785 hasConceptScore W2285826785C154945302 @default.
- W2285826785 hasConceptScore W2285826785C199499590 @default.
- W2285826785 hasConceptScore W2285826785C33923547 @default.
- W2285826785 hasConceptScore W2285826785C41008148 @default.
- W2285826785 hasConceptScore W2285826785C50644808 @default.