Matches in SemOpenAlex for { <https://semopenalex.org/work/W2285902904> ?p ?o ?g. }
- W2285902904 endingPage "310" @default.
- W2285902904 startingPage "298" @default.
- W2285902904 abstract "The dynamics of fluids and their interaction with surfaces in Unconventional Gas Reservoirs (UGRs) are very different from those in conventional systems. The physics of flow through the matrices of these reservoirs are not well understood. The small size of flow conduits which is comparable to the gas mean free path results in a deviation from Darcy to slip, transition and free molecular flow regimes. Solving Navier–Stokes (N–S) equations with modified boundary conditions has so far been the best practical approach to describe these flow behaviours. In this paper, a study of slip flow in shale gas reservoirs is presented. Several permeability measurements were performed using three shale rock samples to study the slip permeability. The Maxwellian type slip boundary conditions were used in N–S equations to obtain the slip coefficients and tangential momentum accommodation coefficient (TMAC) in porous media from the experimental data. Our results show that slip coefficients in porous media are higher than those in non-porous systems. In addition, it is found that the TMAC is smaller in porous media in comparison to flow in non-porous materials. These observations, which are attributed to greater surface area and roughness, are in agreement with literature data, which are limited to flow through individual micro conduits. The outcomes of this study will be useful for accurate prediction of gas flow rate in shale/tight gas reservoirs when using slip boundary conditions." @default.
- W2285902904 created "2016-06-24" @default.
- W2285902904 creator A5032145040 @default.
- W2285902904 creator A5085604487 @default.
- W2285902904 date "2016-06-01" @default.
- W2285902904 modified "2023-10-14" @default.
- W2285902904 title "Slip flow in porous media" @default.
- W2285902904 cites W1966090307 @default.
- W2285902904 cites W1966799339 @default.
- W2285902904 cites W1966970909 @default.
- W2285902904 cites W1968350386 @default.
- W2285902904 cites W1972160746 @default.
- W2285902904 cites W1981636025 @default.
- W2285902904 cites W1982833966 @default.
- W2285902904 cites W1993288443 @default.
- W2285902904 cites W1998810877 @default.
- W2285902904 cites W2007283787 @default.
- W2285902904 cites W2011174140 @default.
- W2285902904 cites W2011568548 @default.
- W2285902904 cites W2016288301 @default.
- W2285902904 cites W2018026391 @default.
- W2285902904 cites W2018407264 @default.
- W2285902904 cites W2023858023 @default.
- W2285902904 cites W2025200637 @default.
- W2285902904 cites W2026534213 @default.
- W2285902904 cites W2026955257 @default.
- W2285902904 cites W2027065708 @default.
- W2285902904 cites W2030559131 @default.
- W2285902904 cites W2035024767 @default.
- W2285902904 cites W2038122387 @default.
- W2285902904 cites W2044206653 @default.
- W2285902904 cites W2046188304 @default.
- W2285902904 cites W2049849727 @default.
- W2285902904 cites W2062470499 @default.
- W2285902904 cites W2062551280 @default.
- W2285902904 cites W2063584551 @default.
- W2285902904 cites W2068292056 @default.
- W2285902904 cites W2071154366 @default.
- W2285902904 cites W2074871021 @default.
- W2285902904 cites W2078298270 @default.
- W2285902904 cites W2079015378 @default.
- W2285902904 cites W2080418680 @default.
- W2285902904 cites W2081269524 @default.
- W2285902904 cites W2085050261 @default.
- W2285902904 cites W2089295240 @default.
- W2285902904 cites W2092079250 @default.
- W2285902904 cites W2093445429 @default.
- W2285902904 cites W2120055764 @default.
- W2285902904 cites W2152133194 @default.
- W2285902904 cites W2157523136 @default.
- W2285902904 cites W2165854364 @default.
- W2285902904 cites W2475529452 @default.
- W2285902904 cites W4236974991 @default.
- W2285902904 doi "https://doi.org/10.1016/j.fuel.2016.01.057" @default.
- W2285902904 hasPublicationYear "2016" @default.
- W2285902904 type Work @default.
- W2285902904 sameAs 2285902904 @default.
- W2285902904 citedByCount "96" @default.
- W2285902904 countsByYear W22859029042016 @default.
- W2285902904 countsByYear W22859029042017 @default.
- W2285902904 countsByYear W22859029042018 @default.
- W2285902904 countsByYear W22859029042019 @default.
- W2285902904 countsByYear W22859029042020 @default.
- W2285902904 countsByYear W22859029042021 @default.
- W2285902904 countsByYear W22859029042022 @default.
- W2285902904 countsByYear W22859029042023 @default.
- W2285902904 crossrefType "journal-article" @default.
- W2285902904 hasAuthorship W2285902904A5032145040 @default.
- W2285902904 hasAuthorship W2285902904A5085604487 @default.
- W2285902904 hasConcept C105569014 @default.
- W2285902904 hasConcept C120882062 @default.
- W2285902904 hasConcept C121332964 @default.
- W2285902904 hasConcept C127313418 @default.
- W2285902904 hasConcept C134306372 @default.
- W2285902904 hasConcept C139166363 @default.
- W2285902904 hasConcept C151730666 @default.
- W2285902904 hasConcept C153127940 @default.
- W2285902904 hasConcept C182310444 @default.
- W2285902904 hasConcept C183447037 @default.
- W2285902904 hasConcept C185592680 @default.
- W2285902904 hasConcept C187320778 @default.
- W2285902904 hasConcept C19191322 @default.
- W2285902904 hasConcept C192562407 @default.
- W2285902904 hasConcept C195268267 @default.
- W2285902904 hasConcept C21141959 @default.
- W2285902904 hasConcept C2777447996 @default.
- W2285902904 hasConcept C2779096232 @default.
- W2285902904 hasConcept C2993020645 @default.
- W2285902904 hasConcept C33923547 @default.
- W2285902904 hasConcept C38349280 @default.
- W2285902904 hasConcept C41625074 @default.
- W2285902904 hasConcept C55493867 @default.
- W2285902904 hasConcept C57879066 @default.
- W2285902904 hasConcept C6648577 @default.
- W2285902904 hasConcept C97355855 @default.
- W2285902904 hasConceptScore W2285902904C105569014 @default.
- W2285902904 hasConceptScore W2285902904C120882062 @default.
- W2285902904 hasConceptScore W2285902904C121332964 @default.