Matches in SemOpenAlex for { <https://semopenalex.org/work/W2286180176> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2286180176 endingPage "48" @default.
- W2286180176 startingPage "41" @default.
- W2286180176 abstract "In this paper an improved rough neural network is presented for identification of chaotic system. Rough neural networks are a type of neural stractures that they are designed based on rough neurons. A rough neuron is considered as a pair of neurons that called lower boandry neuron and upper boandry neuron. Rough neuron approach, allows use of interval computing in neural networks, therefore it can be considered as a new opinion in designing neural networks. The same as multilayer perceptron, rough neural networks also can be trained using by back propagation algorithm based on gradient descending, however, this algorithm has problems such as local minima. In this paper, a new supervised learning method based on effective error of neuron is presented for training of neural networks, which it is called probabilistic learning. To evaluate this study, performance of rough neural network improved, and proposed learning algorithm have been examined in terms of error detection of chaotic time series." @default.
- W2286180176 created "2016-06-24" @default.
- W2286180176 creator A5067466596 @default.
- W2286180176 creator A5089396669 @default.
- W2286180176 date "2012-04-15" @default.
- W2286180176 modified "2023-09-23" @default.
- W2286180176 title "Implementation of Rough Neural Networks with Probabilistic Learning for Nonlinear System Identification" @default.
- W2286180176 cites W1576987263 @default.
- W2286180176 cites W2024060531 @default.
- W2286180176 cites W2042492924 @default.
- W2286180176 cites W2064152920 @default.
- W2286180176 cites W2075782265 @default.
- W2286180176 cites W2783316750 @default.
- W2286180176 hasPublicationYear "2012" @default.
- W2286180176 type Work @default.
- W2286180176 sameAs 2286180176 @default.
- W2286180176 citedByCount "0" @default.
- W2286180176 crossrefType "journal-article" @default.
- W2286180176 hasAuthorship W2286180176A5067466596 @default.
- W2286180176 hasAuthorship W2286180176A5089396669 @default.
- W2286180176 hasConcept C121332964 @default.
- W2286180176 hasConcept C134342201 @default.
- W2286180176 hasConcept C136389625 @default.
- W2286180176 hasConcept C153180895 @default.
- W2286180176 hasConcept C154945302 @default.
- W2286180176 hasConcept C155032097 @default.
- W2286180176 hasConcept C158622935 @default.
- W2286180176 hasConcept C175202392 @default.
- W2286180176 hasConcept C179717631 @default.
- W2286180176 hasConcept C2777052490 @default.
- W2286180176 hasConcept C41008148 @default.
- W2286180176 hasConcept C49937458 @default.
- W2286180176 hasConcept C50644808 @default.
- W2286180176 hasConcept C62520636 @default.
- W2286180176 hasConceptScore W2286180176C121332964 @default.
- W2286180176 hasConceptScore W2286180176C134342201 @default.
- W2286180176 hasConceptScore W2286180176C136389625 @default.
- W2286180176 hasConceptScore W2286180176C153180895 @default.
- W2286180176 hasConceptScore W2286180176C154945302 @default.
- W2286180176 hasConceptScore W2286180176C155032097 @default.
- W2286180176 hasConceptScore W2286180176C158622935 @default.
- W2286180176 hasConceptScore W2286180176C175202392 @default.
- W2286180176 hasConceptScore W2286180176C179717631 @default.
- W2286180176 hasConceptScore W2286180176C2777052490 @default.
- W2286180176 hasConceptScore W2286180176C41008148 @default.
- W2286180176 hasConceptScore W2286180176C49937458 @default.
- W2286180176 hasConceptScore W2286180176C50644808 @default.
- W2286180176 hasConceptScore W2286180176C62520636 @default.
- W2286180176 hasIssue "1" @default.
- W2286180176 hasLocation W22861801761 @default.
- W2286180176 hasOpenAccess W2286180176 @default.
- W2286180176 hasPrimaryLocation W22861801761 @default.
- W2286180176 hasRelatedWork W108737386 @default.
- W2286180176 hasRelatedWork W1526649871 @default.
- W2286180176 hasRelatedWork W1984086050 @default.
- W2286180176 hasRelatedWork W2001612591 @default.
- W2286180176 hasRelatedWork W2009163533 @default.
- W2286180176 hasRelatedWork W2053540614 @default.
- W2286180176 hasRelatedWork W2102693176 @default.
- W2286180176 hasRelatedWork W2110602867 @default.
- W2286180176 hasRelatedWork W2150063261 @default.
- W2286180176 hasRelatedWork W2166580430 @default.
- W2286180176 hasRelatedWork W2368496123 @default.
- W2286180176 hasRelatedWork W2495037877 @default.
- W2286180176 hasRelatedWork W2593032664 @default.
- W2286180176 hasRelatedWork W2734990166 @default.
- W2286180176 hasRelatedWork W2921043587 @default.
- W2286180176 hasRelatedWork W2997869759 @default.
- W2286180176 hasRelatedWork W3021446850 @default.
- W2286180176 hasRelatedWork W31839763 @default.
- W2286180176 hasRelatedWork W3370582 @default.
- W2286180176 hasRelatedWork W770847938 @default.
- W2286180176 hasVolume "6" @default.
- W2286180176 isParatext "false" @default.
- W2286180176 isRetracted "false" @default.
- W2286180176 magId "2286180176" @default.
- W2286180176 workType "article" @default.