Matches in SemOpenAlex for { <https://semopenalex.org/work/W2286877141> ?p ?o ?g. }
- W2286877141 endingPage "55" @default.
- W2286877141 startingPage "41" @default.
- W2286877141 abstract "The extraction of ideal age feature is a challenging task in vibration-based bearing remaining useful life (RUL) estimation. Aiming at this problem, a new approach is proposed on the basis of time–frequency representation (TFR) and supervised dimensionality reduction. Firstly, S transform and Gaussian pyramid are employed to obtain TFRs at multiple scales. Textural features of TFRs are used as the high-dimensional features. Then, a two-step supervised dimensionality reduction technique, i.e. principal component analysis (PCA) plus linear discriminant analysis, is employed to reduce the dimensionality, in which the target dimension and number of classes are taken as variable parameters. Finally, the simple multiple linear regression model is utilized to estimate the RUL. Experimental results indicate that the proposed approach outperforms the methods using traditional statistical features and/or PCA. Additionally, variable conditions of load and speed should be considered in the future to further improve the proposed approach." @default.
- W2286877141 created "2016-06-24" @default.
- W2286877141 creator A5002417986 @default.
- W2286877141 creator A5010206131 @default.
- W2286877141 creator A5041767486 @default.
- W2286877141 date "2016-05-01" @default.
- W2286877141 modified "2023-10-12" @default.
- W2286877141 title "Bearing remaining useful life estimation based on time–frequency representation and supervised dimensionality reduction" @default.
- W2286877141 cites W1807984730 @default.
- W2286877141 cites W1964671517 @default.
- W2286877141 cites W1974097586 @default.
- W2286877141 cites W1977002251 @default.
- W2286877141 cites W1981898901 @default.
- W2286877141 cites W1985437849 @default.
- W2286877141 cites W1986754283 @default.
- W2286877141 cites W1990141548 @default.
- W2286877141 cites W1994191509 @default.
- W2286877141 cites W2003205626 @default.
- W2286877141 cites W2012352340 @default.
- W2286877141 cites W2012374219 @default.
- W2286877141 cites W2016163169 @default.
- W2286877141 cites W2030166992 @default.
- W2286877141 cites W2039051707 @default.
- W2286877141 cites W2042311265 @default.
- W2286877141 cites W2043779128 @default.
- W2286877141 cites W2044309218 @default.
- W2286877141 cites W2048868027 @default.
- W2286877141 cites W2050941243 @default.
- W2286877141 cites W2052164429 @default.
- W2286877141 cites W2055873761 @default.
- W2286877141 cites W2057018442 @default.
- W2286877141 cites W2064666683 @default.
- W2286877141 cites W2067102235 @default.
- W2286877141 cites W2074413628 @default.
- W2286877141 cites W2078268638 @default.
- W2286877141 cites W2083520984 @default.
- W2286877141 cites W2091305989 @default.
- W2286877141 cites W2103504761 @default.
- W2286877141 cites W2121647436 @default.
- W2286877141 cites W2132138860 @default.
- W2286877141 cites W2133832971 @default.
- W2286877141 cites W2151103935 @default.
- W2286877141 cites W2163352848 @default.
- W2286877141 doi "https://doi.org/10.1016/j.measurement.2015.11.047" @default.
- W2286877141 hasPublicationYear "2016" @default.
- W2286877141 type Work @default.
- W2286877141 sameAs 2286877141 @default.
- W2286877141 citedByCount "77" @default.
- W2286877141 countsByYear W22868771412016 @default.
- W2286877141 countsByYear W22868771412017 @default.
- W2286877141 countsByYear W22868771412018 @default.
- W2286877141 countsByYear W22868771412019 @default.
- W2286877141 countsByYear W22868771412020 @default.
- W2286877141 countsByYear W22868771412021 @default.
- W2286877141 countsByYear W22868771412022 @default.
- W2286877141 countsByYear W22868771412023 @default.
- W2286877141 crossrefType "journal-article" @default.
- W2286877141 hasAuthorship W2286877141A5002417986 @default.
- W2286877141 hasAuthorship W2286877141A5010206131 @default.
- W2286877141 hasAuthorship W2286877141A5041767486 @default.
- W2286877141 hasConcept C111030470 @default.
- W2286877141 hasConcept C142575187 @default.
- W2286877141 hasConcept C153180895 @default.
- W2286877141 hasConcept C154945302 @default.
- W2286877141 hasConcept C17744445 @default.
- W2286877141 hasConcept C199539241 @default.
- W2286877141 hasConcept C202444582 @default.
- W2286877141 hasConcept C2524010 @default.
- W2286877141 hasConcept C27438332 @default.
- W2286877141 hasConcept C2776359362 @default.
- W2286877141 hasConcept C33676613 @default.
- W2286877141 hasConcept C33923547 @default.
- W2286877141 hasConcept C41008148 @default.
- W2286877141 hasConcept C52622490 @default.
- W2286877141 hasConcept C69738355 @default.
- W2286877141 hasConcept C70518039 @default.
- W2286877141 hasConcept C94625758 @default.
- W2286877141 hasConceptScore W2286877141C111030470 @default.
- W2286877141 hasConceptScore W2286877141C142575187 @default.
- W2286877141 hasConceptScore W2286877141C153180895 @default.
- W2286877141 hasConceptScore W2286877141C154945302 @default.
- W2286877141 hasConceptScore W2286877141C17744445 @default.
- W2286877141 hasConceptScore W2286877141C199539241 @default.
- W2286877141 hasConceptScore W2286877141C202444582 @default.
- W2286877141 hasConceptScore W2286877141C2524010 @default.
- W2286877141 hasConceptScore W2286877141C27438332 @default.
- W2286877141 hasConceptScore W2286877141C2776359362 @default.
- W2286877141 hasConceptScore W2286877141C33676613 @default.
- W2286877141 hasConceptScore W2286877141C33923547 @default.
- W2286877141 hasConceptScore W2286877141C41008148 @default.
- W2286877141 hasConceptScore W2286877141C52622490 @default.
- W2286877141 hasConceptScore W2286877141C69738355 @default.
- W2286877141 hasConceptScore W2286877141C70518039 @default.
- W2286877141 hasConceptScore W2286877141C94625758 @default.
- W2286877141 hasFunder F4320321001 @default.
- W2286877141 hasLocation W22868771411 @default.
- W2286877141 hasOpenAccess W2286877141 @default.
- W2286877141 hasPrimaryLocation W22868771411 @default.