Matches in SemOpenAlex for { <https://semopenalex.org/work/W2286942643> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W2286942643 abstract "Introduction So What Is Big Data? Growing Interest in Decision Making What This Book Addresses The Conversation about Big Data Technological Change as a Driver of Big Data The Central Question: So What? Our Goals as Authors References The Mother of Invention's Triplets: Moore's Law, the Proliferation of Data, and Data Storage Technology Moore's Law Parallel Computing, Between and Within Machines Quantum Computing Recap of Growth in Computing Power Storage, Storage Everywhere Grist for the Mill: Data Used and Unused Agriculture Automotive Marketing in the Physical World Online Marketing Asset Reliability and Efficiency Process Tracking and Automation Toward a Definition of Big Data Putting Big Data in Context Key Concepts of Big Data and Their Consequences Summary References. Hadoop Power through Distribution Cost Effectiveness of Hadoop Not Every Problem Is a Nail Some Technical Aspects Troubleshooting Hadoop Running Hadoop Hadoop File System MapReduce Pig and Hive Installation Current Hadoop Ecosystem Hadoop Vendors Cloudera Amazon Web Services (AWS) Hortonworks IBM Intel MapR Microsoft To Run Pig Latin Using Powershell Pivotal References HBase and Other Big Data Databases Evolution from Flat File to the Three V's Flat File Hierarchical Database Network Database Relational Database Object-Oriented Databases Relational-Object Databases Transition to Big Data Databases What Is Different bbout HBase? What Is Bigtable? What Is MapReduce? What Are the Various Modalities for Big Data Databases? Graph Databases How Does a Graph Database Work? What is the Performance of a Graph Database? Document Databases Key-Value Databases Column-Oriented Databases HBase Apache Accumulo References Machine Learning Machine Learning Basics Classifying with Nearest Neighbors Naive Bayes Support Vector Machines Improving Classification with Adaptive Boosting Regression Logistic Regression Tree-Based Regression K-Means Clustering Apriori Algorithm Frequent Pattern-Growth Principal Component Analysis (PCA) Singular Value Decomposition Neural Networks Big Data and MapReduce Data Exploration Spam Filtering Ranking Predictive Regression Text Regression Multidimensional Scaling Social Graphing References Statistics Statistics, Statistics Everywhere Digging into the Data Standard Deviation: The Standard Measure of Dispersion The Power of Shapes: Distributions Distributions: Gaussian Curve Distributions: Why Be Normal? Distributions: The Long Arm of the Power Law The Upshot? Statistics Are not Bloodless Fooling Ourselves: Seeing What We Want to See in the Data We Can Learn Much from an Octopus Hypothesis Testing: Seeking a Verdict Two-Tailed Testing Hypothesis Testing: A Broad Field Moving on to Specific Hypothesis Tests Regression and Correlation p Value in Hypothesis Testing: A Successful Gatekeeper? Specious Correlations and Overfitting the Data A Sample of Common Statistical Software Packages Minitab SPSS R SAS Big Data Analytics Hadoop Integration Angoss Statistica Capabilities Summary References Google Big Data Giants Google Go Android Google Product Offerings Google Analytics Advertising and Campaign Performance Analysis and Testing Facebook Ning Non-United States Social Media Tencent Line Sina Weibo Odnoklassniki Vkontakte Nimbuzz Ranking Network Sites Negative Issues with Social Networks Amazon Some Final Words References Geographic Information Systems (GIS) GIS Implementations A GIS Example GIS Tools GIS Databases References Discovery Faceted Search versus Strict Taxonomy First Key Ability: Breaking Down Barriers Second Key Ability: Flexible Search and Navigation Underlying Technology The Upshot Summary References Data Quality Know Thy Data and Thyself Structured, Unstructured, and Semistructured Data Data Inconsistency: An Example from This Book The Black Swan and Incomplete Data How Data Can Fool Us Ambiguous Data Aging of Data or Variables Missing Variables May Change the Meaning Inconsistent Use of Units and Terminology Biases Sampling Bias Publication Bias Survivorship Bias Data as a Video, Not a Snapshot: Different Viewpoints as a Noise Filter What Is My Toolkit for Improving My Data? Ishikawa Diagram Interrelationship Digraph Force Field Analysis Data-Centric Methods Troubleshooting Queries from Source Data Troubleshooting Data Quality beyond the Source System Using Our Hidden Resources Summary References Benefits Data Serendipity Converting Data Dreck to Usefulness Sales Returned Merchandise Security Medical Travel Lodging Vehicle Meals Geographical Information Systems New York City Chicago CLEARMAP Baltimore San Francisco Los Angeles Tucson, Arizona, University of Arizona, and COPLINK Social Networking Education General Educational Data Legacy Data Grades and other Indicators Testing Results Addresses, Phone Numbers, and More Concluding Comments References Concerns Part Two: Basic Principles of National Application Collection Limitation Principle Data Quality Principle Purpose Specification Principle Use Limitation Principle Security Safeguards Principle Openness Principle Individual Participation Principle Accountability Principle Logical Fallacies Affirming the Consequent Denying the Antecedent Ludic Fallacy Cognitive Biases Confirmation Bias Notational Bias Selection/Sample Bias Halo Effect Consistency and Hindsight Biases Congruence Bias Von Restorff Effect Data Serendipity Converting Data Dreck to Usefulness Sales Merchandise Returns Security CompStat Medical Travel Lodging Vehicle Meals Social Networking Education Making Yourself Harder to Track Misinformation Disinformation Reducing/Eliminating Profiles Social Media Self Redefinition Identity Theft Facebook Concluding Comments References Epilogue Michael Porter's Five Forces Model Bargaining Power of Customers Bargaining Power of Suppliers Threat of New Entrants Others The OODA Loop Implementing Big Data Nonlinear, Qualitative Thinking Closing References" @default.
- W2286942643 created "2016-06-24" @default.
- W2286942643 creator A5012968501 @default.
- W2286942643 creator A5020746651 @default.
- W2286942643 date "2015-02-05" @default.
- W2286942643 modified "2023-09-25" @default.
- W2286942643 title "Big Data Analytics: A Practical Guide for Managers" @default.
- W2286942643 hasPublicationYear "2015" @default.
- W2286942643 type Work @default.
- W2286942643 sameAs 2286942643 @default.
- W2286942643 citedByCount "3" @default.
- W2286942643 countsByYear W22869426432015 @default.
- W2286942643 countsByYear W22869426432021 @default.
- W2286942643 crossrefType "book" @default.
- W2286942643 hasAuthorship W2286942643A5012968501 @default.
- W2286942643 hasAuthorship W2286942643A5020746651 @default.
- W2286942643 hasConcept C111919701 @default.
- W2286942643 hasConcept C136764020 @default.
- W2286942643 hasConcept C2522767166 @default.
- W2286942643 hasConcept C2779599972 @default.
- W2286942643 hasConcept C41008148 @default.
- W2286942643 hasConcept C70061542 @default.
- W2286942643 hasConcept C75684735 @default.
- W2286942643 hasConcept C77088390 @default.
- W2286942643 hasConceptScore W2286942643C111919701 @default.
- W2286942643 hasConceptScore W2286942643C136764020 @default.
- W2286942643 hasConceptScore W2286942643C2522767166 @default.
- W2286942643 hasConceptScore W2286942643C2779599972 @default.
- W2286942643 hasConceptScore W2286942643C41008148 @default.
- W2286942643 hasConceptScore W2286942643C70061542 @default.
- W2286942643 hasConceptScore W2286942643C75684735 @default.
- W2286942643 hasConceptScore W2286942643C77088390 @default.
- W2286942643 hasLocation W22869426431 @default.
- W2286942643 hasOpenAccess W2286942643 @default.
- W2286942643 hasPrimaryLocation W22869426431 @default.
- W2286942643 hasRelatedWork W1499999294 @default.
- W2286942643 hasRelatedWork W1556083950 @default.
- W2286942643 hasRelatedWork W1912802097 @default.
- W2286942643 hasRelatedWork W2010513477 @default.
- W2286942643 hasRelatedWork W2141975087 @default.
- W2286942643 hasRelatedWork W2159128662 @default.
- W2286942643 hasRelatedWork W2292704536 @default.
- W2286942643 hasRelatedWork W2334227055 @default.
- W2286942643 hasRelatedWork W2392529064 @default.
- W2286942643 hasRelatedWork W2395543002 @default.
- W2286942643 hasRelatedWork W2416802153 @default.
- W2286942643 hasRelatedWork W2495974797 @default.
- W2286942643 hasRelatedWork W2511360135 @default.
- W2286942643 hasRelatedWork W2588711112 @default.
- W2286942643 hasRelatedWork W2615674339 @default.
- W2286942643 hasRelatedWork W2760871150 @default.
- W2286942643 hasRelatedWork W2810424599 @default.
- W2286942643 hasRelatedWork W2898662226 @default.
- W2286942643 hasRelatedWork W3040820124 @default.
- W2286942643 hasRelatedWork W3133826720 @default.
- W2286942643 isParatext "false" @default.
- W2286942643 isRetracted "false" @default.
- W2286942643 magId "2286942643" @default.
- W2286942643 workType "book" @default.