Matches in SemOpenAlex for { <https://semopenalex.org/work/W2287234120> ?p ?o ?g. }
- W2287234120 endingPage "1756002" @default.
- W2287234120 startingPage "1756002" @default.
- W2287234120 abstract "The goal of this paper is to identify individuals by analyzing their gait. Instead of using binary silhouettes as input data (as done in many previous works) we propose and evaluate the use of motion descriptors based on densely sampled short-term trajectories. We take advantage of state-of-the-art people detectors to define custom spatial configurations of the descriptors around the target person, obtaining a rich representation of the gait motion. The local motion features (described by the Divergence-Curl-Shear descriptor [M. Jain, H. Jegou and P. Bouthemy, Better exploiting motion for better action recognition, in Proc. IEEE Conf. Computer Vision Pattern Recognition (CVPR) (2013), pp. 2555–2562.]) extracted on the different spatial areas of the person are combined into a single high-level gait descriptor by using the Fisher Vector encoding [F. Perronnin, J. Sánchez and T. Mensink, Improving the Fisher kernel for large-scale image classification, in Proc. European Conf. Computer Vision (ECCV) (2010), pp. 143–156]. The proposed approach, coined Pyramidal Fisher Motion, is experimentally validated on ‘CASIA’ dataset [S. Yu, D. Tan and T. Tan, A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition, in Proc. Int. Conf. Pattern Recognition, Vol. 4 (2006), pp. 441–444]. (parts B and C), ‘TUM GAID’ dataset, [M. Hofmann, J. Geiger, S. Bachmann, B. Schuller and G. Rigoll, The TUM Gait from Audio, Image and Depth (GAID) database: Multimodal recognition of subjects and traits, J. Vis. Commun. Image Represent. 25(1) (2014) 195–206]. ‘CMU MoBo’ dataset [R. Gross and J. Shi, The CMU Motion of Body (MoBo) database, Technical Report CMU-RI-TR-01-18, Robotics Institute (2001)]. and the recent ‘AVA Multiview Gait’ dataset [D. López-Fernández, F. Madrid-Cuevas, A. Carmona-Poyato, M. Marín-Jiménez and R. Muñoz-Salinas, The AVA multi-view dataset for gait recognition, in Activity Monitoring by Multiple Distributed Sensing, Lecture Notes in Computer Science (Springer, 2014), pp. 26–39]. The results show that this new approach achieves state-of-the-art results in the problem of gait recognition, allowing to recognize walking people from diverse viewpoints on single and multiple camera setups, wearing different clothes, carrying bags, walking at diverse speeds and not limited to straight walking paths." @default.
- W2287234120 created "2016-06-24" @default.
- W2287234120 creator A5029567783 @default.
- W2287234120 creator A5041004091 @default.
- W2287234120 creator A5042354417 @default.
- W2287234120 creator A5085664138 @default.
- W2287234120 date "2017-01-01" @default.
- W2287234120 modified "2023-10-14" @default.
- W2287234120 title "Fisher Motion Descriptor for Multiview Gait Recognition" @default.
- W2287234120 cites W1545364842 @default.
- W2287234120 cites W1557856703 @default.
- W2287234120 cites W157180873 @default.
- W2287234120 cites W1573546770 @default.
- W2287234120 cites W1971029019 @default.
- W2287234120 cites W1975036395 @default.
- W2287234120 cites W1983740756 @default.
- W2287234120 cites W1984031350 @default.
- W2287234120 cites W1987579743 @default.
- W2287234120 cites W1988652596 @default.
- W2287234120 cites W1990717412 @default.
- W2287234120 cites W1990734998 @default.
- W2287234120 cites W2022458825 @default.
- W2287234120 cites W2022476163 @default.
- W2287234120 cites W2023962778 @default.
- W2287234120 cites W2024925411 @default.
- W2287234120 cites W2026800967 @default.
- W2287234120 cites W2028281835 @default.
- W2287234120 cites W2032409772 @default.
- W2287234120 cites W2039896520 @default.
- W2287234120 cites W2051960621 @default.
- W2287234120 cites W2057313557 @default.
- W2287234120 cites W2058247977 @default.
- W2287234120 cites W2062036973 @default.
- W2287234120 cites W2071576700 @default.
- W2287234120 cites W2072510697 @default.
- W2287234120 cites W2074587583 @default.
- W2287234120 cites W2081646104 @default.
- W2287234120 cites W2083563433 @default.
- W2287234120 cites W2084796520 @default.
- W2287234120 cites W2118572719 @default.
- W2287234120 cites W2126680226 @default.
- W2287234120 cites W2137604415 @default.
- W2287234120 cites W2151458682 @default.
- W2287234120 cites W2168356304 @default.
- W2287234120 cites W2274890216 @default.
- W2287234120 cites W2303532634 @default.
- W2287234120 doi "https://doi.org/10.1142/s021800141756002x" @default.
- W2287234120 hasPublicationYear "2017" @default.
- W2287234120 type Work @default.
- W2287234120 sameAs 2287234120 @default.
- W2287234120 citedByCount "40" @default.
- W2287234120 countsByYear W22872341202017 @default.
- W2287234120 countsByYear W22872341202018 @default.
- W2287234120 countsByYear W22872341202019 @default.
- W2287234120 countsByYear W22872341202020 @default.
- W2287234120 countsByYear W22872341202021 @default.
- W2287234120 countsByYear W22872341202022 @default.
- W2287234120 countsByYear W22872341202023 @default.
- W2287234120 crossrefType "journal-article" @default.
- W2287234120 hasAuthorship W2287234120A5029567783 @default.
- W2287234120 hasAuthorship W2287234120A5041004091 @default.
- W2287234120 hasAuthorship W2287234120A5042354417 @default.
- W2287234120 hasAuthorship W2287234120A5085664138 @default.
- W2287234120 hasBestOaLocation W22872341202 @default.
- W2287234120 hasConcept C104114177 @default.
- W2287234120 hasConcept C12267149 @default.
- W2287234120 hasConcept C151800584 @default.
- W2287234120 hasConcept C153180895 @default.
- W2287234120 hasConcept C154945302 @default.
- W2287234120 hasConcept C31972630 @default.
- W2287234120 hasConcept C33923547 @default.
- W2287234120 hasConcept C41008148 @default.
- W2287234120 hasConcept C42407357 @default.
- W2287234120 hasConcept C86803240 @default.
- W2287234120 hasConceptScore W2287234120C104114177 @default.
- W2287234120 hasConceptScore W2287234120C12267149 @default.
- W2287234120 hasConceptScore W2287234120C151800584 @default.
- W2287234120 hasConceptScore W2287234120C153180895 @default.
- W2287234120 hasConceptScore W2287234120C154945302 @default.
- W2287234120 hasConceptScore W2287234120C31972630 @default.
- W2287234120 hasConceptScore W2287234120C33923547 @default.
- W2287234120 hasConceptScore W2287234120C41008148 @default.
- W2287234120 hasConceptScore W2287234120C42407357 @default.
- W2287234120 hasConceptScore W2287234120C86803240 @default.
- W2287234120 hasIssue "01" @default.
- W2287234120 hasLocation W22872341201 @default.
- W2287234120 hasLocation W22872341202 @default.
- W2287234120 hasLocation W22872341203 @default.
- W2287234120 hasOpenAccess W2287234120 @default.
- W2287234120 hasPrimaryLocation W22872341201 @default.
- W2287234120 hasRelatedWork W2041399278 @default.
- W2287234120 hasRelatedWork W2056016498 @default.
- W2287234120 hasRelatedWork W2136184105 @default.
- W2287234120 hasRelatedWork W2336974148 @default.
- W2287234120 hasRelatedWork W2389470892 @default.
- W2287234120 hasRelatedWork W2687972263 @default.
- W2287234120 hasRelatedWork W3013515612 @default.
- W2287234120 hasRelatedWork W4293087713 @default.