Matches in SemOpenAlex for { <https://semopenalex.org/work/W2287278712> ?p ?o ?g. }
- W2287278712 endingPage "118" @default.
- W2287278712 startingPage "105" @default.
- W2287278712 abstract "Landslides are an important natural hazard that causes a great amount of damage around the world every year, especially during the rainy season. The Lianhua area is located in the middle of China's southern mountainous area, west of Jiangxi Province, and is known to be an area prone to landslides. The aim of this study was to evaluate and compare landslide susceptibility maps produced using the random forest (RF) data mining technique with those produced by bivariate (evidential belief function and frequency ratio) and multivariate (logistic regression) statistical models for Lianhua County, China. First, a landslide inventory map was prepared using aerial photograph interpretation, satellite images, and extensive field surveys. In total, 163 landslide events were recognized in the study area, with 114 landslides (70%) used for training and 49 landslides (30%) used for validation. Next, the landslide conditioning factors-including the slope angle, altitude, slope aspect, topographic wetness index (TWI), slope-length (LS), plan curvature, profile curvature, distance to rivers, distance to faults, distance to roads, annual precipitation, land use, normalized difference vegetation index (NDVI), and lithology-were derived from the spatial database. Finally, the landslide susceptibility maps of Lianhua County were generated in ArcGIS 10.1 based on the random forest (RF), evidential belief function (EBF), frequency ratio (FR), and logistic regression (LR) approaches and were validated using a receiver operating characteristic (ROC) curve. The ROC plot assessment results showed that for landslide susceptibility maps produced using the EBF, FR, LR, and RF models, the area under the curve (AUC) values were 0.8122, 0.8134, 0.7751, and 0.7172, respectively. Therefore, we can conclude that all four models have an AUC of more than 0.70 and can be used in landslide susceptibility mapping in the study area; meanwhile, the EBF and FR models had the best performance for Lianhua County, China. Thus, the resultant susceptibility maps will be useful for land use planning and hazard mitigation aims." @default.
- W2287278712 created "2016-06-24" @default.
- W2287278712 creator A5006705342 @default.
- W2287278712 creator A5040905675 @default.
- W2287278712 creator A5050605534 @default.
- W2287278712 date "2016-04-01" @default.
- W2287278712 modified "2023-10-14" @default.
- W2287278712 title "Landslide susceptibility assessment in Lianhua County (China): A comparison between a random forest data mining technique and bivariate and multivariate statistical models" @default.
- W2287278712 cites W18678914 @default.
- W2287278712 cites W1965765785 @default.
- W2287278712 cites W1968546252 @default.
- W2287278712 cites W1969337051 @default.
- W2287278712 cites W1969477520 @default.
- W2287278712 cites W1970298043 @default.
- W2287278712 cites W1971263248 @default.
- W2287278712 cites W1971725995 @default.
- W2287278712 cites W1971988122 @default.
- W2287278712 cites W1973637706 @default.
- W2287278712 cites W1977069065 @default.
- W2287278712 cites W1978831758 @default.
- W2287278712 cites W1979486410 @default.
- W2287278712 cites W1983423541 @default.
- W2287278712 cites W1984065426 @default.
- W2287278712 cites W1985288162 @default.
- W2287278712 cites W1987226764 @default.
- W2287278712 cites W1988426649 @default.
- W2287278712 cites W1990748933 @default.
- W2287278712 cites W1991269377 @default.
- W2287278712 cites W1996031526 @default.
- W2287278712 cites W1996933066 @default.
- W2287278712 cites W1997863627 @default.
- W2287278712 cites W2000187559 @default.
- W2287278712 cites W2001535969 @default.
- W2287278712 cites W2001619529 @default.
- W2287278712 cites W2002620848 @default.
- W2287278712 cites W2003049509 @default.
- W2287278712 cites W2008827496 @default.
- W2287278712 cites W2012702170 @default.
- W2287278712 cites W2013713766 @default.
- W2287278712 cites W2017458088 @default.
- W2287278712 cites W2019957091 @default.
- W2287278712 cites W2020062384 @default.
- W2287278712 cites W2022741342 @default.
- W2287278712 cites W2027724118 @default.
- W2287278712 cites W2027804648 @default.
- W2287278712 cites W2029324310 @default.
- W2287278712 cites W2029599316 @default.
- W2287278712 cites W2030509187 @default.
- W2287278712 cites W2031790558 @default.
- W2287278712 cites W2035549409 @default.
- W2287278712 cites W2035699211 @default.
- W2287278712 cites W2036986124 @default.
- W2287278712 cites W2039985772 @default.
- W2287278712 cites W2040698615 @default.
- W2287278712 cites W2040990873 @default.
- W2287278712 cites W2041105862 @default.
- W2287278712 cites W2044579603 @default.
- W2287278712 cites W2044648858 @default.
- W2287278712 cites W2046361090 @default.
- W2287278712 cites W2046629514 @default.
- W2287278712 cites W2049271682 @default.
- W2287278712 cites W2050513806 @default.
- W2287278712 cites W2051367231 @default.
- W2287278712 cites W2051784080 @default.
- W2287278712 cites W2053532632 @default.
- W2287278712 cites W2057039778 @default.
- W2287278712 cites W2057388082 @default.
- W2287278712 cites W2058082754 @default.
- W2287278712 cites W2060382151 @default.
- W2287278712 cites W2063958435 @default.
- W2287278712 cites W2066685935 @default.
- W2287278712 cites W2068427269 @default.
- W2287278712 cites W2068528462 @default.
- W2287278712 cites W2069663627 @default.
- W2287278712 cites W2069930921 @default.
- W2287278712 cites W2072919404 @default.
- W2287278712 cites W2075496252 @default.
- W2287278712 cites W2077292227 @default.
- W2287278712 cites W2078730937 @default.
- W2287278712 cites W2081620141 @default.
- W2287278712 cites W2082622325 @default.
- W2287278712 cites W2087388291 @default.
- W2287278712 cites W2088276287 @default.
- W2287278712 cites W2088730795 @default.
- W2287278712 cites W2089645904 @default.
- W2287278712 cites W2090292633 @default.
- W2287278712 cites W2091455951 @default.
- W2287278712 cites W2095555151 @default.
- W2287278712 cites W2102150307 @default.
- W2287278712 cites W2103540160 @default.
- W2287278712 cites W2114449185 @default.
- W2287278712 cites W2115551011 @default.
- W2287278712 cites W2115820600 @default.
- W2287278712 cites W2117350110 @default.
- W2287278712 cites W2123885778 @default.
- W2287278712 cites W2124005542 @default.
- W2287278712 cites W2124217455 @default.
- W2287278712 cites W2129487013 @default.