Matches in SemOpenAlex for { <https://semopenalex.org/work/W2287295252> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2287295252 abstract "The development of accurate flood prediction model could reduce number of fatalities. In this paper, water level time series, spatio-temporal precipitation and hydrological data are used for flood prediction. Since our data is high dimensional and not all features are correlated to flood, our proposed algorithm is designed to find influential spatial features, or features at locations which are highly correlated to flood. With the idea that true causes, or highly correlated features to flood, should give accurate information about flood, our proposed flood prediction algorithm is based on Bayesian based causal discovery. The purpose of this paper is twofold. Firstly, we propose a new causal discovery algorithm which is Bayesian-based approach with an optimization function for maximizing mutual information. Secondly, the proposed algorithm is applied to real-world precipitation and hydrological data to find influential spatial features on future flood in North Texas area. Flood prediction models can then be learned from selected features. Experiments on synthetic data confirm that our proposed algorithm is more accurate in finding true causal relationships than two competitors, Group Lasso and Markov2P. Experiments on flood predictions show that our approach has the best accuracy in almost all six lead time predictions. The accuracy and result visualizations also suggest that our proposed algorithm can find influential features to flood." @default.
- W2287295252 created "2016-06-24" @default.
- W2287295252 creator A5015128288 @default.
- W2287295252 creator A5025495745 @default.
- W2287295252 creator A5042943987 @default.
- W2287295252 creator A5067290650 @default.
- W2287295252 date "2015-11-01" @default.
- W2287295252 modified "2023-09-26" @default.
- W2287295252 title "Flood Prediction and Mining Influential Spatial Features on Future Flood with Causal Discovery" @default.
- W2287295252 cites W1975062332 @default.
- W2287295252 cites W2014929711 @default.
- W2287295252 cites W2018476170 @default.
- W2287295252 cites W2051148835 @default.
- W2287295252 cites W2064090829 @default.
- W2287295252 cites W2105089456 @default.
- W2287295252 cites W2117771570 @default.
- W2287295252 cites W2142534172 @default.
- W2287295252 cites W2161642932 @default.
- W2287295252 cites W2340859457 @default.
- W2287295252 cites W2749828495 @default.
- W2287295252 cites W2963358729 @default.
- W2287295252 cites W45505117 @default.
- W2287295252 cites W81972919 @default.
- W2287295252 doi "https://doi.org/10.1109/icdmw.2015.111" @default.
- W2287295252 hasPublicationYear "2015" @default.
- W2287295252 type Work @default.
- W2287295252 sameAs 2287295252 @default.
- W2287295252 citedByCount "5" @default.
- W2287295252 countsByYear W22872952522018 @default.
- W2287295252 countsByYear W22872952522019 @default.
- W2287295252 crossrefType "proceedings-article" @default.
- W2287295252 hasAuthorship W2287295252A5015128288 @default.
- W2287295252 hasAuthorship W2287295252A5025495745 @default.
- W2287295252 hasAuthorship W2287295252A5042943987 @default.
- W2287295252 hasAuthorship W2287295252A5067290650 @default.
- W2287295252 hasConcept C107673813 @default.
- W2287295252 hasConcept C119857082 @default.
- W2287295252 hasConcept C124101348 @default.
- W2287295252 hasConcept C154945302 @default.
- W2287295252 hasConcept C166957645 @default.
- W2287295252 hasConcept C183195422 @default.
- W2287295252 hasConcept C205649164 @default.
- W2287295252 hasConcept C41008148 @default.
- W2287295252 hasConcept C74256435 @default.
- W2287295252 hasConceptScore W2287295252C107673813 @default.
- W2287295252 hasConceptScore W2287295252C119857082 @default.
- W2287295252 hasConceptScore W2287295252C124101348 @default.
- W2287295252 hasConceptScore W2287295252C154945302 @default.
- W2287295252 hasConceptScore W2287295252C166957645 @default.
- W2287295252 hasConceptScore W2287295252C183195422 @default.
- W2287295252 hasConceptScore W2287295252C205649164 @default.
- W2287295252 hasConceptScore W2287295252C41008148 @default.
- W2287295252 hasConceptScore W2287295252C74256435 @default.
- W2287295252 hasLocation W22872952521 @default.
- W2287295252 hasOpenAccess W2287295252 @default.
- W2287295252 hasPrimaryLocation W22872952521 @default.
- W2287295252 hasRelatedWork W1522644772 @default.
- W2287295252 hasRelatedWork W1575463142 @default.
- W2287295252 hasRelatedWork W1603972635 @default.
- W2287295252 hasRelatedWork W175606897 @default.
- W2287295252 hasRelatedWork W1974756800 @default.
- W2287295252 hasRelatedWork W2025125406 @default.
- W2287295252 hasRelatedWork W2091184140 @default.
- W2287295252 hasRelatedWork W2147771508 @default.
- W2287295252 hasRelatedWork W2148631958 @default.
- W2287295252 hasRelatedWork W2187849165 @default.
- W2287295252 hasRelatedWork W2226857171 @default.
- W2287295252 hasRelatedWork W2264158382 @default.
- W2287295252 hasRelatedWork W2297005912 @default.
- W2287295252 hasRelatedWork W2621608569 @default.
- W2287295252 hasRelatedWork W2757434569 @default.
- W2287295252 hasRelatedWork W2774729216 @default.
- W2287295252 hasRelatedWork W2909915997 @default.
- W2287295252 hasRelatedWork W2971047516 @default.
- W2287295252 hasRelatedWork W3122068298 @default.
- W2287295252 hasRelatedWork W3158397868 @default.
- W2287295252 isParatext "false" @default.
- W2287295252 isRetracted "false" @default.
- W2287295252 magId "2287295252" @default.
- W2287295252 workType "article" @default.