Matches in SemOpenAlex for { <https://semopenalex.org/work/W2287478045> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2287478045 endingPage "680" @default.
- W2287478045 startingPage "657" @default.
- W2287478045 abstract "Reinforced concrete (RC) deep beams are structural members that predominantly fail in shear. Therefore, determining the shear strength of these types of beams is very important. The strut-and-tie method is commonly used to design deep beams, and this method has been adopted in many building codes (ACI318-14, Eurocode 2-2004, CSA A23.3-2004). In this study, the efficiency of artificial neural networks (ANNs) in predicting the shear strength of RC deep beams is investigated as a different approach to the strut-and-tie method. An ANN model was developed using experimental data for 214 normal and high-strength concrete deep beams from an existing literature database. Seven different input parameters affecting the shear strength of the RC deep beams were selected to create the ANN structure. Each parameter was arranged as an input vector and a corresponding output vector that includes the shear strength of the RC deep beam. The ANN model was trained and tested using a multi-layered back-propagation method. The most convenient ANN algorithm was determined as trainGDX. Additionally, the results in the existing literature and the accuracy of the strut-and-tie model in ACI318-14 in predicting the shear strength of the RC deep beams were investigated using the same test data. The study shows that the ANN model provides acceptable predictions of the ultimate shear strength of RC deep beams (maximum <TEX>$R^2{approx}0.97$</TEX>). Additionally, the ANN model is shown to provide more accurate predictions of the shear capacity than all the other computed methods in this study. The ACI318-14-STM method was very conservative, as expected. Moreover, the study shows that the proposed ANN model predicts the shear strengths of RC deep beams better than does the strut-and-tie model approaches." @default.
- W2287478045 created "2016-06-24" @default.
- W2287478045 creator A5039250077 @default.
- W2287478045 date "2016-02-25" @default.
- W2287478045 modified "2023-09-27" @default.
- W2287478045 title "Shear strength estimation of RC deep beams using the ANN and strut-and-tie approaches" @default.
- W2287478045 cites W1498436455 @default.
- W2287478045 cites W1973484369 @default.
- W2287478045 cites W1979131162 @default.
- W2287478045 cites W2022607336 @default.
- W2287478045 cites W2037726965 @default.
- W2287478045 cites W2038017582 @default.
- W2287478045 cites W2048796786 @default.
- W2287478045 cites W2049433545 @default.
- W2287478045 cites W2060728877 @default.
- W2287478045 cites W2093621578 @default.
- W2287478045 cites W2143395338 @default.
- W2287478045 cites W2160500957 @default.
- W2287478045 cites W2334793411 @default.
- W2287478045 cites W2383321725 @default.
- W2287478045 cites W4243065012 @default.
- W2287478045 doi "https://doi.org/10.12989/sem.2016.57.4.657" @default.
- W2287478045 hasPublicationYear "2016" @default.
- W2287478045 type Work @default.
- W2287478045 sameAs 2287478045 @default.
- W2287478045 citedByCount "4" @default.
- W2287478045 countsByYear W22874780452017 @default.
- W2287478045 countsByYear W22874780452018 @default.
- W2287478045 countsByYear W22874780452022 @default.
- W2287478045 crossrefType "journal-article" @default.
- W2287478045 hasAuthorship W2287478045A5039250077 @default.
- W2287478045 hasConcept C127313418 @default.
- W2287478045 hasConcept C127413603 @default.
- W2287478045 hasConcept C127893833 @default.
- W2287478045 hasConcept C154945302 @default.
- W2287478045 hasConcept C159390177 @default.
- W2287478045 hasConcept C159750122 @default.
- W2287478045 hasConcept C159985019 @default.
- W2287478045 hasConcept C168834538 @default.
- W2287478045 hasConcept C16910744 @default.
- W2287478045 hasConcept C192562407 @default.
- W2287478045 hasConcept C199360897 @default.
- W2287478045 hasConcept C2988805333 @default.
- W2287478045 hasConcept C41008148 @default.
- W2287478045 hasConcept C50644808 @default.
- W2287478045 hasConcept C66938386 @default.
- W2287478045 hasConcept C96035792 @default.
- W2287478045 hasConceptScore W2287478045C127313418 @default.
- W2287478045 hasConceptScore W2287478045C127413603 @default.
- W2287478045 hasConceptScore W2287478045C127893833 @default.
- W2287478045 hasConceptScore W2287478045C154945302 @default.
- W2287478045 hasConceptScore W2287478045C159390177 @default.
- W2287478045 hasConceptScore W2287478045C159750122 @default.
- W2287478045 hasConceptScore W2287478045C159985019 @default.
- W2287478045 hasConceptScore W2287478045C168834538 @default.
- W2287478045 hasConceptScore W2287478045C16910744 @default.
- W2287478045 hasConceptScore W2287478045C192562407 @default.
- W2287478045 hasConceptScore W2287478045C199360897 @default.
- W2287478045 hasConceptScore W2287478045C2988805333 @default.
- W2287478045 hasConceptScore W2287478045C41008148 @default.
- W2287478045 hasConceptScore W2287478045C50644808 @default.
- W2287478045 hasConceptScore W2287478045C66938386 @default.
- W2287478045 hasConceptScore W2287478045C96035792 @default.
- W2287478045 hasIssue "4" @default.
- W2287478045 hasLocation W22874780451 @default.
- W2287478045 hasOpenAccess W2287478045 @default.
- W2287478045 hasPrimaryLocation W22874780451 @default.
- W2287478045 hasRelatedWork W1530447006 @default.
- W2287478045 hasRelatedWork W1556854017 @default.
- W2287478045 hasRelatedWork W1972995702 @default.
- W2287478045 hasRelatedWork W2060285663 @default.
- W2287478045 hasRelatedWork W2321715322 @default.
- W2287478045 hasRelatedWork W282457500 @default.
- W2287478045 hasRelatedWork W2965870726 @default.
- W2287478045 hasRelatedWork W4248967500 @default.
- W2287478045 hasRelatedWork W792144576 @default.
- W2287478045 hasRelatedWork W3082729187 @default.
- W2287478045 hasVolume "57" @default.
- W2287478045 isParatext "false" @default.
- W2287478045 isRetracted "false" @default.
- W2287478045 magId "2287478045" @default.
- W2287478045 workType "article" @default.