Matches in SemOpenAlex for { <https://semopenalex.org/work/W2287481334> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2287481334 abstract "The ear recognition techniques in image processing become a key issue in ear identification and analysis for many geometric applications. Some current specialized feature extraction methods attempted to examine the effects of pose variation and lighting changes that potentially alter the visual characteristics of the structure of the ear. In addition, one of the main issues to be addressed is the need for larger datasets of ear images. Where in a more accurate estimate of the recognition performance can be obtained, and the potential variations in the performance can be analyzed. The classifier combination problem can be defined as a problem of finding the combination function accepting dimensional score vectors from classifiers and outputting final classification scores.. The main objectives of this research are: To enhance the pose variations including differing angulations and distances by combining the Iterative Closest Point (ICP) algorithm matching with the Stochastic Clustering Method (SCM) and to propose an effective surface matching scheme based on the modified ICP algorithm combined SCM method. ICP is widely used for 3D shape When the input is a 2D image, the result is usually affected by the two limiting factors; lighting and angle of image, on the other hand, when the input is a 3D image the weakness is that the time for processing usually takes longer compared to processing 2D images and that the method is usually hard to apply in real life situation. An efficient ear recognition system therefore is one that integrates different methods such as the ICP and SCM into a neural network. The neural network should be able to perform logical and real-time assessment from minimal information inputs and it should be affected minimally by different factors that influence image quality. The most important steps in the research methodology are :- Integration of ICP and SCM Algorithms, Ear Feature Extraction, a local feature extraction technique (SURF) used to enhance the images to minimize the effect of pose variations and reduced image registration, the SURF feature carried out on enhanced images to gain the sets of local features for each enhanced image, Ear Learning, Ear Classification and Ear Matching." @default.
- W2287481334 created "2016-06-24" @default.
- W2287481334 creator A5033249451 @default.
- W2287481334 creator A5061746217 @default.
- W2287481334 creator A5070390862 @default.
- W2287481334 date "2013-01-01" @default.
- W2287481334 modified "2023-09-26" @default.
- W2287481334 title "Human Ear Recognition Using an Integrated Method of ICP and SCM Techniques" @default.
- W2287481334 cites W1494550388 @default.
- W2287481334 cites W2019487368 @default.
- W2287481334 cites W2061491033 @default.
- W2287481334 cites W2101799416 @default.
- W2287481334 cites W2109655672 @default.
- W2287481334 cites W2119605622 @default.
- W2287481334 cites W2126647465 @default.
- W2287481334 cites W2140959843 @default.
- W2287481334 cites W2157292021 @default.
- W2287481334 cites W2157684450 @default.
- W2287481334 cites W2169403998 @default.
- W2287481334 cites W2321593711 @default.
- W2287481334 cites W3197761997 @default.
- W2287481334 doi "https://doi.org/10.1007/978-3-642-40409-2_32" @default.
- W2287481334 hasPublicationYear "2013" @default.
- W2287481334 type Work @default.
- W2287481334 sameAs 2287481334 @default.
- W2287481334 citedByCount "0" @default.
- W2287481334 crossrefType "book-chapter" @default.
- W2287481334 hasAuthorship W2287481334A5033249451 @default.
- W2287481334 hasAuthorship W2287481334A5061746217 @default.
- W2287481334 hasAuthorship W2287481334A5070390862 @default.
- W2287481334 hasConcept C105795698 @default.
- W2287481334 hasConcept C115961682 @default.
- W2287481334 hasConcept C121332964 @default.
- W2287481334 hasConcept C127413603 @default.
- W2287481334 hasConcept C131979681 @default.
- W2287481334 hasConcept C153180895 @default.
- W2287481334 hasConcept C154945302 @default.
- W2287481334 hasConcept C165064840 @default.
- W2287481334 hasConcept C188198153 @default.
- W2287481334 hasConcept C195958017 @default.
- W2287481334 hasConcept C24890656 @default.
- W2287481334 hasConcept C2992441837 @default.
- W2287481334 hasConcept C31972630 @default.
- W2287481334 hasConcept C33923547 @default.
- W2287481334 hasConcept C41008148 @default.
- W2287481334 hasConcept C52622490 @default.
- W2287481334 hasConcept C73555534 @default.
- W2287481334 hasConcept C78519656 @default.
- W2287481334 hasConcept C9417928 @default.
- W2287481334 hasConcept C95623464 @default.
- W2287481334 hasConceptScore W2287481334C105795698 @default.
- W2287481334 hasConceptScore W2287481334C115961682 @default.
- W2287481334 hasConceptScore W2287481334C121332964 @default.
- W2287481334 hasConceptScore W2287481334C127413603 @default.
- W2287481334 hasConceptScore W2287481334C131979681 @default.
- W2287481334 hasConceptScore W2287481334C153180895 @default.
- W2287481334 hasConceptScore W2287481334C154945302 @default.
- W2287481334 hasConceptScore W2287481334C165064840 @default.
- W2287481334 hasConceptScore W2287481334C188198153 @default.
- W2287481334 hasConceptScore W2287481334C195958017 @default.
- W2287481334 hasConceptScore W2287481334C24890656 @default.
- W2287481334 hasConceptScore W2287481334C2992441837 @default.
- W2287481334 hasConceptScore W2287481334C31972630 @default.
- W2287481334 hasConceptScore W2287481334C33923547 @default.
- W2287481334 hasConceptScore W2287481334C41008148 @default.
- W2287481334 hasConceptScore W2287481334C52622490 @default.
- W2287481334 hasConceptScore W2287481334C73555534 @default.
- W2287481334 hasConceptScore W2287481334C78519656 @default.
- W2287481334 hasConceptScore W2287481334C9417928 @default.
- W2287481334 hasConceptScore W2287481334C95623464 @default.
- W2287481334 hasLocation W22874813341 @default.
- W2287481334 hasOpenAccess W2287481334 @default.
- W2287481334 hasPrimaryLocation W22874813341 @default.
- W2287481334 hasRelatedWork W138964724 @default.
- W2287481334 hasRelatedWork W1509720469 @default.
- W2287481334 hasRelatedWork W1902008675 @default.
- W2287481334 hasRelatedWork W1967418409 @default.
- W2287481334 hasRelatedWork W2052794910 @default.
- W2287481334 hasRelatedWork W2087095708 @default.
- W2287481334 hasRelatedWork W2100009494 @default.
- W2287481334 hasRelatedWork W2105175994 @default.
- W2287481334 hasRelatedWork W2107533837 @default.
- W2287481334 hasRelatedWork W2382505484 @default.
- W2287481334 hasRelatedWork W2560449083 @default.
- W2287481334 hasRelatedWork W2763106985 @default.
- W2287481334 hasRelatedWork W2792583777 @default.
- W2287481334 hasRelatedWork W2798341776 @default.
- W2287481334 hasRelatedWork W2809734546 @default.
- W2287481334 hasRelatedWork W3128958276 @default.
- W2287481334 hasRelatedWork W3153048166 @default.
- W2287481334 hasRelatedWork W3184195444 @default.
- W2287481334 hasRelatedWork W901920496 @default.
- W2287481334 hasRelatedWork W3085930747 @default.
- W2287481334 isParatext "false" @default.
- W2287481334 isRetracted "false" @default.
- W2287481334 magId "2287481334" @default.
- W2287481334 workType "book-chapter" @default.