Matches in SemOpenAlex for { <https://semopenalex.org/work/W2287971490> ?p ?o ?g. }
- W2287971490 endingPage "e0148875" @default.
- W2287971490 startingPage "e0148875" @default.
- W2287971490 abstract "Background Detailed spatial location information is important in accurately estimating personal exposure to air pollution. Global Position System (GPS) has been widely used in tracking personal paths and activities. Previous researchers have developed time-activity classification models based on GPS data, most of them were developed for specific regions. An adaptive model for time-location classification can be widely applied to air pollution studies that use GPS to track individual level time-activity patterns. Methods Time-activity data were collected for seven days using GPS loggers and accelerometers from thirteen adult participants from Southern California under free living conditions. We developed an automated model based on random forests to classify major time-activity patterns (i.e. indoor, outdoor-static, outdoor-walking, and in-vehicle travel). Sensitivity analysis was conducted to examine the contribution of the accelerometer data and the supplemental spatial data (i.e. roadway and tax parcel data) to the accuracy of time-activity classification. Our model was evaluated using both leave-one-fold-out and leave-one-subject-out methods. Results Maximum speeds in averaging time intervals of 7 and 5 minutes, and distance to primary highways with limited access were found to be the three most important variables in the classification model. Leave-one-fold-out cross-validation showed an overall accuracy of 99.71%. Sensitivities varied from 84.62% (outdoor walking) to 99.90% (indoor). Specificities varied from 96.33% (indoor) to 99.98% (outdoor static). The exclusion of accelerometer and ambient light sensor variables caused a slight loss in sensitivity for outdoor walking, but little loss in overall accuracy. However, leave-one-subject-out cross-validation showed considerable loss in sensitivity for outdoor static and outdoor walking conditions. Conclusions The random forests classification model can achieve high accuracy for the four major time-activity categories. The model also performed well with just GPS, road and tax parcel data. However, caution is warranted when generalizing the model developed from a small number of subjects to other populations." @default.
- W2287971490 created "2016-06-24" @default.
- W2287971490 creator A5000432967 @default.
- W2287971490 creator A5002295904 @default.
- W2287971490 creator A5011120737 @default.
- W2287971490 creator A5019176178 @default.
- W2287971490 creator A5023722126 @default.
- W2287971490 date "2016-02-26" @default.
- W2287971490 modified "2023-10-16" @default.
- W2287971490 title "Refining Time-Activity Classification of Human Subjects Using the Global Positioning System" @default.
- W2287971490 cites W100575841 @default.
- W2287971490 cites W1965106804 @default.
- W2287971490 cites W1970788804 @default.
- W2287971490 cites W1973937457 @default.
- W2287971490 cites W1975353467 @default.
- W2287971490 cites W1979279626 @default.
- W2287971490 cites W1982167337 @default.
- W2287971490 cites W1983447652 @default.
- W2287971490 cites W1986251803 @default.
- W2287971490 cites W1991942463 @default.
- W2287971490 cites W1993090667 @default.
- W2287971490 cites W1999665787 @default.
- W2287971490 cites W2002353621 @default.
- W2287971490 cites W2007494640 @default.
- W2287971490 cites W2007870064 @default.
- W2287971490 cites W2013616203 @default.
- W2287971490 cites W2017070219 @default.
- W2287971490 cites W2020766884 @default.
- W2287971490 cites W2020774406 @default.
- W2287971490 cites W2024925998 @default.
- W2287971490 cites W2028124237 @default.
- W2287971490 cites W2037529721 @default.
- W2287971490 cites W2038595540 @default.
- W2287971490 cites W2042170753 @default.
- W2287971490 cites W2054499287 @default.
- W2287971490 cites W2055308682 @default.
- W2287971490 cites W2056002551 @default.
- W2287971490 cites W2061647113 @default.
- W2287971490 cites W2063548014 @default.
- W2287971490 cites W2069167685 @default.
- W2287971490 cites W2075855441 @default.
- W2287971490 cites W2080586915 @default.
- W2287971490 cites W2081620141 @default.
- W2287971490 cites W2081738193 @default.
- W2287971490 cites W2090250072 @default.
- W2287971490 cites W2091372472 @default.
- W2287971490 cites W2091374137 @default.
- W2287971490 cites W2092098607 @default.
- W2287971490 cites W2099788768 @default.
- W2287971490 cites W2106474301 @default.
- W2287971490 cites W2106601118 @default.
- W2287971490 cites W2107656403 @default.
- W2287971490 cites W2110093060 @default.
- W2287971490 cites W2113718646 @default.
- W2287971490 cites W2120204563 @default.
- W2287971490 cites W2123524221 @default.
- W2287971490 cites W2124330161 @default.
- W2287971490 cites W2130578587 @default.
- W2287971490 cites W2134430874 @default.
- W2287971490 cites W2137165487 @default.
- W2287971490 cites W2139602106 @default.
- W2287971490 cites W2140952543 @default.
- W2287971490 cites W2143394441 @default.
- W2287971490 cites W2143729023 @default.
- W2287971490 cites W2155261478 @default.
- W2287971490 cites W2155554490 @default.
- W2287971490 cites W2156878610 @default.
- W2287971490 cites W2170401061 @default.
- W2287971490 cites W2290448126 @default.
- W2287971490 cites W2911964244 @default.
- W2287971490 cites W334172332 @default.
- W2287971490 doi "https://doi.org/10.1371/journal.pone.0148875" @default.
- W2287971490 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4769278" @default.
- W2287971490 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26919723" @default.
- W2287971490 hasPublicationYear "2016" @default.
- W2287971490 type Work @default.
- W2287971490 sameAs 2287971490 @default.
- W2287971490 citedByCount "12" @default.
- W2287971490 countsByYear W22879714902017 @default.
- W2287971490 countsByYear W22879714902018 @default.
- W2287971490 countsByYear W22879714902020 @default.
- W2287971490 countsByYear W22879714902022 @default.
- W2287971490 crossrefType "journal-article" @default.
- W2287971490 hasAuthorship W2287971490A5000432967 @default.
- W2287971490 hasAuthorship W2287971490A5002295904 @default.
- W2287971490 hasAuthorship W2287971490A5011120737 @default.
- W2287971490 hasAuthorship W2287971490A5019176178 @default.
- W2287971490 hasAuthorship W2287971490A5023722126 @default.
- W2287971490 hasBestOaLocation W22879714901 @default.
- W2287971490 hasConcept C111919701 @default.
- W2287971490 hasConcept C154945302 @default.
- W2287971490 hasConcept C169258074 @default.
- W2287971490 hasConcept C39432304 @default.
- W2287971490 hasConcept C41008148 @default.
- W2287971490 hasConcept C60229501 @default.
- W2287971490 hasConcept C76155785 @default.
- W2287971490 hasConcept C89805583 @default.
- W2287971490 hasConceptScore W2287971490C111919701 @default.