Matches in SemOpenAlex for { <https://semopenalex.org/work/W2288335478> ?p ?o ?g. }
- W2288335478 endingPage "44" @default.
- W2288335478 startingPage "32" @default.
- W2288335478 abstract "For the last 2 decades, supertree reconstruction has been an active field of research and has seen the development of a large number of major algorithms. Because of the growing popularity of the supertree methods, it has become necessary to evaluate the performance of these algorithms to determine which are the best options (especially with regard to the supermatrix approach that is widely used). In this study, seven of the most commonly used supertree methods are investigated by using a large empirical data set (in terms of number of taxa and molecular markers) from the worldwide flowering plant family Sapindaceae. Supertree methods were evaluated using several criteria: similarity of the supertrees with the input trees, similarity between the supertrees and the total evidence tree, level of resolution of the supertree and computational time required by the algorithm. Additional analyses were also conducted on a reduced data set to test if the performance levels were affected by the heuristic searches rather than the algorithms themselves. Based on our results, two main groups of supertree methods were identified: on one hand, the matrix representation with parsimony (MRP), MinFlip, and MinCut methods performed well according to our criteria, whereas the average consensus, split fit, and most similar supertree methods showed a poorer performance or at least did not behave the same way as the total evidence tree. Results for the super distance matrix, that is, the most recent approach tested here, were promising with at least one derived method performing as well as MRP, MinFlip, and MinCut. The output of each method was only slightly improved when applied to the reduced data set, suggesting a correct behavior of the heuristic searches and a relatively low sensitivity of the algorithms to data set sizes and missing data. Results also showed that the MRP analyses could reach a high level of quality even when using a simple heuristic search strategy, with the exception of MRP with Purvis coding scheme and reversible parsimony. The future of supertrees lies in the implementation of a standardized heuristic search for all methods and the increase in computing power to handle large data sets. The latter would prove to be particularly useful for promising approaches such as the maximum quartet fit method that yet requires substantial computing power." @default.
- W2288335478 created "2016-06-24" @default.
- W2288335478 creator A5004526283 @default.
- W2288335478 creator A5011438577 @default.
- W2288335478 creator A5041030210 @default.
- W2288335478 creator A5044471833 @default.
- W2288335478 date "2010-11-10" @default.
- W2288335478 modified "2023-09-30" @default.
- W2288335478 title "Comparative Performance of Supertree Algorithms in Large Data Sets Using the Soapberry Family (Sapindaceae) as a Case Study" @default.
- W2288335478 cites W1550929454 @default.
- W2288335478 cites W1563401818 @default.
- W2288335478 cites W1796399702 @default.
- W2288335478 cites W1966035687 @default.
- W2288335478 cites W1971935354 @default.
- W2288335478 cites W1977694535 @default.
- W2288335478 cites W1990264596 @default.
- W2288335478 cites W1991405010 @default.
- W2288335478 cites W1992800126 @default.
- W2288335478 cites W1996558441 @default.
- W2288335478 cites W2009661773 @default.
- W2288335478 cites W2010327220 @default.
- W2288335478 cites W2011158918 @default.
- W2288335478 cites W2033850030 @default.
- W2288335478 cites W2033854905 @default.
- W2288335478 cites W2036507321 @default.
- W2288335478 cites W2039245568 @default.
- W2288335478 cites W2039785242 @default.
- W2288335478 cites W2040811618 @default.
- W2288335478 cites W2055764798 @default.
- W2288335478 cites W2058938859 @default.
- W2288335478 cites W2060425093 @default.
- W2288335478 cites W2060665252 @default.
- W2288335478 cites W2066125076 @default.
- W2288335478 cites W2067983424 @default.
- W2288335478 cites W2068494358 @default.
- W2288335478 cites W2070421744 @default.
- W2288335478 cites W2080620661 @default.
- W2288335478 cites W2081030047 @default.
- W2288335478 cites W2082246635 @default.
- W2288335478 cites W2088512249 @default.
- W2288335478 cites W2094277888 @default.
- W2288335478 cites W2098213805 @default.
- W2288335478 cites W2098747033 @default.
- W2288335478 cites W2099459260 @default.
- W2288335478 cites W2105428167 @default.
- W2288335478 cites W2105580430 @default.
- W2288335478 cites W2113531912 @default.
- W2288335478 cites W2123801779 @default.
- W2288335478 cites W2127166992 @default.
- W2288335478 cites W2127713506 @default.
- W2288335478 cites W2127847431 @default.
- W2288335478 cites W2133444743 @default.
- W2288335478 cites W2140483939 @default.
- W2288335478 cites W2140890016 @default.
- W2288335478 cites W2142943897 @default.
- W2288335478 cites W2143720447 @default.
- W2288335478 cites W2146090382 @default.
- W2288335478 cites W2146243941 @default.
- W2288335478 cites W2148723086 @default.
- W2288335478 cites W2150212245 @default.
- W2288335478 cites W2151043165 @default.
- W2288335478 cites W2151690408 @default.
- W2288335478 cites W2152176885 @default.
- W2288335478 cites W2154500208 @default.
- W2288335478 cites W2157072822 @default.
- W2288335478 cites W2161909415 @default.
- W2288335478 cites W2163924163 @default.
- W2288335478 cites W2168696662 @default.
- W2288335478 cites W2178123728 @default.
- W2288335478 cites W2206253138 @default.
- W2288335478 cites W2302115440 @default.
- W2288335478 cites W2315781448 @default.
- W2288335478 cites W2316574777 @default.
- W2288335478 cites W2318935451 @default.
- W2288335478 cites W2319702489 @default.
- W2288335478 cites W2329185472 @default.
- W2288335478 cites W4379662611 @default.
- W2288335478 cites W71841000 @default.
- W2288335478 doi "https://doi.org/10.1093/sysbio/syq057" @default.
- W2288335478 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21068445" @default.
- W2288335478 hasPublicationYear "2010" @default.
- W2288335478 type Work @default.
- W2288335478 sameAs 2288335478 @default.
- W2288335478 citedByCount "26" @default.
- W2288335478 countsByYear W22883354782012 @default.
- W2288335478 countsByYear W22883354782013 @default.
- W2288335478 countsByYear W22883354782014 @default.
- W2288335478 countsByYear W22883354782015 @default.
- W2288335478 countsByYear W22883354782016 @default.
- W2288335478 countsByYear W22883354782017 @default.
- W2288335478 countsByYear W22883354782021 @default.
- W2288335478 countsByYear W22883354782022 @default.
- W2288335478 crossrefType "journal-article" @default.
- W2288335478 hasAuthorship W2288335478A5004526283 @default.
- W2288335478 hasAuthorship W2288335478A5011438577 @default.
- W2288335478 hasAuthorship W2288335478A5041030210 @default.
- W2288335478 hasAuthorship W2288335478A5044471833 @default.
- W2288335478 hasBestOaLocation W22883354781 @default.