Matches in SemOpenAlex for { <https://semopenalex.org/work/W2288884963> ?p ?o ?g. }
- W2288884963 endingPage "299" @default.
- W2288884963 startingPage "277" @default.
- W2288884963 abstract "Let A be an isotropic, sub-gaussian m × n matrix. We prove that the process $$Z_{x},:=,left |Axright |_{2} -sqrt{m}left |xright |_{2}$$ has sub-gaussian increments, that is, $$|Z_{x} - Z_{y}|_{psi _{2}} leq C|x - y|_{2}$$ for any $$x,y in mathbb{R}^{n}$$ . Using this, we show that for any bounded set $$T subseteq mathbb{R}^{n}$$ , the deviation of ∥ Ax ∥ 2 around its mean is uniformly bounded by the Gaussian complexity of T. We also prove a local version of this theorem, which allows for unbounded sets. These theorems have various applications, some of which are reviewed in this paper. In particular, we give a new result regarding model selection in the constrained linear model." @default.
- W2288884963 created "2016-06-24" @default.
- W2288884963 creator A5018866413 @default.
- W2288884963 creator A5070281692 @default.
- W2288884963 creator A5076085270 @default.
- W2288884963 creator A5089076722 @default.
- W2288884963 date "2017-01-01" @default.
- W2288884963 modified "2023-09-23" @default.
- W2288884963 title "A Simple Tool for Bounding the Deviation of Random Matrices on Geometric Sets" @default.
- W2288884963 cites W143004564 @default.
- W2288884963 cites W1529624360 @default.
- W2288884963 cites W1599545414 @default.
- W2288884963 cites W2025223969 @default.
- W2288884963 cites W2032291279 @default.
- W2288884963 cites W2066086960 @default.
- W2288884963 cites W2070944235 @default.
- W2288884963 cites W2082640545 @default.
- W2288884963 cites W2094644779 @default.
- W2288884963 cites W2101675075 @default.
- W2288884963 cites W2113385666 @default.
- W2288884963 cites W2119745496 @default.
- W2288884963 cites W2121716262 @default.
- W2288884963 cites W2499349432 @default.
- W2288884963 cites W2963859534 @default.
- W2288884963 cites W2964312599 @default.
- W2288884963 cites W2964322027 @default.
- W2288884963 cites W2979473749 @default.
- W2288884963 cites W3124617746 @default.
- W2288884963 cites W4300263211 @default.
- W2288884963 cites W74946117 @default.
- W2288884963 doi "https://doi.org/10.1007/978-3-319-45282-1_18" @default.
- W2288884963 hasPublicationYear "2017" @default.
- W2288884963 type Work @default.
- W2288884963 sameAs 2288884963 @default.
- W2288884963 citedByCount "39" @default.
- W2288884963 countsByYear W22888849632017 @default.
- W2288884963 countsByYear W22888849632018 @default.
- W2288884963 countsByYear W22888849632019 @default.
- W2288884963 countsByYear W22888849632020 @default.
- W2288884963 countsByYear W22888849632021 @default.
- W2288884963 countsByYear W22888849632022 @default.
- W2288884963 countsByYear W22888849632023 @default.
- W2288884963 crossrefType "book-chapter" @default.
- W2288884963 hasAuthorship W2288884963A5018866413 @default.
- W2288884963 hasAuthorship W2288884963A5070281692 @default.
- W2288884963 hasAuthorship W2288884963A5076085270 @default.
- W2288884963 hasAuthorship W2288884963A5089076722 @default.
- W2288884963 hasBestOaLocation W22888849632 @default.
- W2288884963 hasConcept C106487976 @default.
- W2288884963 hasConcept C111472728 @default.
- W2288884963 hasConcept C114614502 @default.
- W2288884963 hasConcept C118615104 @default.
- W2288884963 hasConcept C121332964 @default.
- W2288884963 hasConcept C134306372 @default.
- W2288884963 hasConcept C138885662 @default.
- W2288884963 hasConcept C154945302 @default.
- W2288884963 hasConcept C159985019 @default.
- W2288884963 hasConcept C163716315 @default.
- W2288884963 hasConcept C192562407 @default.
- W2288884963 hasConcept C2780586882 @default.
- W2288884963 hasConcept C33923547 @default.
- W2288884963 hasConcept C34388435 @default.
- W2288884963 hasConcept C41008148 @default.
- W2288884963 hasConcept C61326573 @default.
- W2288884963 hasConcept C62520636 @default.
- W2288884963 hasConcept C63584917 @default.
- W2288884963 hasConceptScore W2288884963C106487976 @default.
- W2288884963 hasConceptScore W2288884963C111472728 @default.
- W2288884963 hasConceptScore W2288884963C114614502 @default.
- W2288884963 hasConceptScore W2288884963C118615104 @default.
- W2288884963 hasConceptScore W2288884963C121332964 @default.
- W2288884963 hasConceptScore W2288884963C134306372 @default.
- W2288884963 hasConceptScore W2288884963C138885662 @default.
- W2288884963 hasConceptScore W2288884963C154945302 @default.
- W2288884963 hasConceptScore W2288884963C159985019 @default.
- W2288884963 hasConceptScore W2288884963C163716315 @default.
- W2288884963 hasConceptScore W2288884963C192562407 @default.
- W2288884963 hasConceptScore W2288884963C2780586882 @default.
- W2288884963 hasConceptScore W2288884963C33923547 @default.
- W2288884963 hasConceptScore W2288884963C34388435 @default.
- W2288884963 hasConceptScore W2288884963C41008148 @default.
- W2288884963 hasConceptScore W2288884963C61326573 @default.
- W2288884963 hasConceptScore W2288884963C62520636 @default.
- W2288884963 hasConceptScore W2288884963C63584917 @default.
- W2288884963 hasLocation W22888849631 @default.
- W2288884963 hasLocation W22888849632 @default.
- W2288884963 hasLocation W22888849633 @default.
- W2288884963 hasOpenAccess W2288884963 @default.
- W2288884963 hasPrimaryLocation W22888849631 @default.
- W2288884963 hasRelatedWork W1871156538 @default.
- W2288884963 hasRelatedWork W2053661482 @default.
- W2288884963 hasRelatedWork W2080833279 @default.
- W2288884963 hasRelatedWork W2139389209 @default.
- W2288884963 hasRelatedWork W2337187786 @default.
- W2288884963 hasRelatedWork W2951230072 @default.
- W2288884963 hasRelatedWork W4206383990 @default.
- W2288884963 hasRelatedWork W4221142572 @default.
- W2288884963 hasRelatedWork W4301010686 @default.