Matches in SemOpenAlex for { <https://semopenalex.org/work/W228889190> ?p ?o ?g. }
- W228889190 abstract "Currently, there are insufficient resources available across the world to secure all threatened species. In the past decade there has been increasing research in the field of resource allocation for conservation actions. Deciding how to allocate resources optimally poses a challenging problem that is difficult to solve due to a multitude of complexities associated with each action. This requires us to solve the problem using a multidisciplinary framework. The research in this thesis is about addressing resource allocation problems using a decision theory framework. Specifically, we answer the general question about how much resource (time and money) we should allocate among multiple interacting management actions. In chapter 2, we address the question of how social, technological and habitat limitations affect the allocation of money among multiple management actions to mitigate multiple threats. We examine this question using an example of the koala inhabiting the Koala Coast that is limited by constraints: the unwillingness of owners to enclose their dogs a night (social limitations), the effectiveness of road crossing structures (technological limitations) and the amount of suitable koala habitat available for restoration (habitat limitations). Using numerical optimisation, we found the best management option for any budget but we also found that that these limitations significantly reduce the effectiveness of management. Thus, it reduces our ability to achieve a stable population growth rate. The only plausible alternative is to find ways to alleviate these limitations. In chapter 3, we addressed the question of how several key ecological variables influences the amount of resources (time and money) we spend on monitoring a population that we could be managing. Using a simulation model we examined how several demographic parameters influence the optimal monitoring strategy. We found that the amount of time one should spend on monitoring before translocating a population should increase as the unmanaged population growth rate or the initial population size increases. The optimal amount of money to invest in annual monitoring increases as the uncertainty associated with the wild or captive population growth rate, or the initial population size, increases. In chapter 4, we considered the question of whether or not we should abandon our current population management strategy with reliable outcomes, or if we try a new and uncertain strategy, for how long should we pursue that new strategy before reverting to the old strategy. To do this, we uncovered an analytical solution to help us decide when to cease a new action before reverting back to an existing action. We applied this theory to the conservation management of the Christmas Island Pipistrelle, where existing actions appear to have failed and a new strategy, captive breeding, might have secured the species. Our model revealed the time at which we should stop captive breeding before releasing animals back into the wild. We found that the optimal switching time depends on the growth rate of the population under different management actions, the management time frame and the management goal. Chapter 5 and 6 are extensions of Chapter 4. Although Chapter 5 is an extension of chapter 4, it answers a different question. It address the question of finding the optimal time to stop an existing action that has an outcome that is known (certain) and replace it with a new action that is uncertain. We found that it is possible to integrate invasive and threatened species management issues under the same general framework. We illustrated the approach for the conservation of the malleefowl (Leipoa ocellata) where fox baiting has been ongoing and fire management is the new action being considered and for the invasive fire ant (Solenopsis invicta) where nothing was done initially before eradication was considered as the new management action. Even though the optimal time to change an action from the existing to the new management action was affected by similar variables compared to Chapter 4, the analytical solution is different. In Chapter 6, we used stochastic dynamic programming (SDP) to find the exact solution for whether to trial a new action that is uncertain, or continue with an existing action that is certain under an active adaptive management framework. Chapter 6 differs from Chapter 4 and 5 because it uses a stochastic model. We compared the performance of the analytical solutions (Chapter 4 and 5) to the SDP. We found that the best management action depends on the population growth rate of the old, relative to the new management action. Overall, my thesis shows how to allocate resources (money or time) in a wide variety of situations, solved using different mathematical techniques, within a decision theory framework. This thesis provide tools for conservation managers in an uncertain world." @default.
- W228889190 created "2016-06-24" @default.
- W228889190 creator A5005814438 @default.
- W228889190 date "2015-03-26" @default.
- W228889190 modified "2023-09-26" @default.
- W228889190 title "Managing resources (time or money) optimally in Conservation Biology" @default.
- W228889190 cites W106885836 @default.
- W228889190 cites W1499865750 @default.
- W228889190 cites W1500797807 @default.
- W228889190 cites W1501211144 @default.
- W228889190 cites W1513622686 @default.
- W228889190 cites W1531769505 @default.
- W228889190 cites W154931084 @default.
- W228889190 cites W1555558448 @default.
- W228889190 cites W1562277254 @default.
- W228889190 cites W1565205733 @default.
- W228889190 cites W1573614506 @default.
- W228889190 cites W1575307113 @default.
- W228889190 cites W1582053250 @default.
- W228889190 cites W1590012787 @default.
- W228889190 cites W1595916491 @default.
- W228889190 cites W175917862 @default.
- W228889190 cites W1809751118 @default.
- W228889190 cites W1959589527 @default.
- W228889190 cites W1963715149 @default.
- W228889190 cites W1966584287 @default.
- W228889190 cites W1967364044 @default.
- W228889190 cites W1967441547 @default.
- W228889190 cites W1967901188 @default.
- W228889190 cites W1970332207 @default.
- W228889190 cites W1970538481 @default.
- W228889190 cites W1971406989 @default.
- W228889190 cites W1974960176 @default.
- W228889190 cites W1979865175 @default.
- W228889190 cites W1981299511 @default.
- W228889190 cites W1983513427 @default.
- W228889190 cites W1985315491 @default.
- W228889190 cites W1985643499 @default.
- W228889190 cites W1987071180 @default.
- W228889190 cites W1987705696 @default.
- W228889190 cites W1987795418 @default.
- W228889190 cites W1989031074 @default.
- W228889190 cites W1991445071 @default.
- W228889190 cites W1992750643 @default.
- W228889190 cites W1995486091 @default.
- W228889190 cites W1996074976 @default.
- W228889190 cites W1998039395 @default.
- W228889190 cites W1998732820 @default.
- W228889190 cites W1998961565 @default.
- W228889190 cites W2002781611 @default.
- W228889190 cites W2003313078 @default.
- W228889190 cites W2004273516 @default.
- W228889190 cites W2004611760 @default.
- W228889190 cites W2005588784 @default.
- W228889190 cites W2008786861 @default.
- W228889190 cites W2009413779 @default.
- W228889190 cites W2009435671 @default.
- W228889190 cites W2010054882 @default.
- W228889190 cites W2010614057 @default.
- W228889190 cites W2011133046 @default.
- W228889190 cites W2011292626 @default.
- W228889190 cites W2013138857 @default.
- W228889190 cites W2013208368 @default.
- W228889190 cites W2013371635 @default.
- W228889190 cites W2014101946 @default.
- W228889190 cites W2014265988 @default.
- W228889190 cites W2019865481 @default.
- W228889190 cites W2020506297 @default.
- W228889190 cites W2021388011 @default.
- W228889190 cites W2022600220 @default.
- W228889190 cites W2022735648 @default.
- W228889190 cites W2023659256 @default.
- W228889190 cites W2026416225 @default.
- W228889190 cites W2028397279 @default.
- W228889190 cites W2029462341 @default.
- W228889190 cites W2029819739 @default.
- W228889190 cites W2031881865 @default.
- W228889190 cites W2032688037 @default.
- W228889190 cites W2032718951 @default.
- W228889190 cites W2033559798 @default.
- W228889190 cites W2033652699 @default.
- W228889190 cites W2035537103 @default.
- W228889190 cites W2038497282 @default.
- W228889190 cites W2039414916 @default.
- W228889190 cites W2039763854 @default.
- W228889190 cites W2041947822 @default.
- W228889190 cites W2042218105 @default.
- W228889190 cites W2047732160 @default.
- W228889190 cites W2048341834 @default.
- W228889190 cites W2048865588 @default.
- W228889190 cites W2050897199 @default.
- W228889190 cites W2051855342 @default.
- W228889190 cites W2052107345 @default.
- W228889190 cites W2052440083 @default.
- W228889190 cites W2052462576 @default.
- W228889190 cites W2054182768 @default.
- W228889190 cites W2056335602 @default.
- W228889190 cites W2056402315 @default.
- W228889190 cites W2057298298 @default.
- W228889190 cites W2059131239 @default.