Matches in SemOpenAlex for { <https://semopenalex.org/work/W2288893683> ?p ?o ?g. }
- W2288893683 endingPage "55" @default.
- W2288893683 startingPage "46" @default.
- W2288893683 abstract "For mapping soil properties in three dimensions the simplest option is to choose a series of depth intervals, and to calibrate a two-dimensional (2-D) model for each interval. The alternative is to calibrate a full three dimensional (3-D) model that describes the variation in lateral and vertical direction. In 3-D modeling we must anticipate possible changes with depth of the effects of environmental covariates on the soil property of interest. This can be achieved by including interactions between the environmental covariates and depth. Also we must anticipate possible non-stationarity of the residual variance with depth. This can be achieved by fitting a 3-D correlation function, and multiplying the correlation between two points by the residual standard deviations at these two points that are a function of depth. In this paper various 3-D models of the natural logarithms of SOC are compared with 2-D depth-interval specific models. Five environmental covariates are used as predictors in modeling the lateral trend. In the 3-D models also depth was used as a predictor, either categorical, with categories equal to the depth intervals (3-Dcat), or continuous (3-Dcon). The covariance of the residuals in 3-D is modeled by a sum-metric covariance function. Both stationary and non-stationary variance models are fitted. In the non-stationary variance models the residual standard deviations are modeled either as a stepwise function or as a linear function of depth. In the 2-D models the regression coefficients differed largely between the depth intervals. In the 3-Dcat model extreme values for the regression coefficients were leveled out, and in the 3-Dcon model only the coefficients of NDVI and aspect changed with depth. The 3-Dcon model with a residual standard deviation that is a stepwise function of depth had the largest residual log-likelihood and smallest AIC among all 3-D models. Based on the cross-validation root mean squared error (RMSE) there was no single best model. Based on the mean and median of the standardized squared error (MSSE, MedSSE) the 2-D models outperformed all 3-D models. Overestimation of the prediction error variance by the kriging variance was less strong with the non-stationary variance models compared to the stationary variance models. 3-D modeling is required for realistic geostatistical simulation in spatial uncertainty analyses." @default.
- W2288893683 created "2016-06-24" @default.
- W2288893683 creator A5001903786 @default.
- W2288893683 creator A5012342890 @default.
- W2288893683 creator A5076889499 @default.
- W2288893683 date "2016-06-01" @default.
- W2288893683 modified "2023-10-15" @default.
- W2288893683 title "Three-dimensional geostatistical modeling of soil organic carbon: A case study in the Qilian Mountains, China" @default.
- W2288893683 cites W1221070779 @default.
- W2288893683 cites W1781324546 @default.
- W2288893683 cites W1964589705 @default.
- W2288893683 cites W1969476870 @default.
- W2288893683 cites W1993705118 @default.
- W2288893683 cites W1996037626 @default.
- W2288893683 cites W2019894796 @default.
- W2288893683 cites W2031390416 @default.
- W2288893683 cites W2078712779 @default.
- W2288893683 cites W2080665665 @default.
- W2288893683 cites W2084142201 @default.
- W2288893683 cites W2130829682 @default.
- W2288893683 cites W2144189317 @default.
- W2288893683 cites W2145464480 @default.
- W2288893683 cites W2145874683 @default.
- W2288893683 cites W2245710736 @default.
- W2288893683 cites W2273490019 @default.
- W2288893683 cites W4236354984 @default.
- W2288893683 cites W890974504 @default.
- W2288893683 doi "https://doi.org/10.1016/j.catena.2016.02.016" @default.
- W2288893683 hasPublicationYear "2016" @default.
- W2288893683 type Work @default.
- W2288893683 sameAs 2288893683 @default.
- W2288893683 citedByCount "30" @default.
- W2288893683 countsByYear W22888936832016 @default.
- W2288893683 countsByYear W22888936832017 @default.
- W2288893683 countsByYear W22888936832018 @default.
- W2288893683 countsByYear W22888936832019 @default.
- W2288893683 countsByYear W22888936832020 @default.
- W2288893683 countsByYear W22888936832021 @default.
- W2288893683 countsByYear W22888936832022 @default.
- W2288893683 countsByYear W22888936832023 @default.
- W2288893683 crossrefType "journal-article" @default.
- W2288893683 hasAuthorship W2288893683A5001903786 @default.
- W2288893683 hasAuthorship W2288893683A5012342890 @default.
- W2288893683 hasAuthorship W2288893683A5076889499 @default.
- W2288893683 hasConcept C105795698 @default.
- W2288893683 hasConcept C11413529 @default.
- W2288893683 hasConcept C114614502 @default.
- W2288893683 hasConcept C119043178 @default.
- W2288893683 hasConcept C127313418 @default.
- W2288893683 hasConcept C137250428 @default.
- W2288893683 hasConcept C14036430 @default.
- W2288893683 hasConcept C155512373 @default.
- W2288893683 hasConcept C159390177 @default.
- W2288893683 hasConcept C159750122 @default.
- W2288893683 hasConcept C178650346 @default.
- W2288893683 hasConcept C22679943 @default.
- W2288893683 hasConcept C2778067643 @default.
- W2288893683 hasConcept C33923547 @default.
- W2288893683 hasConcept C39464130 @default.
- W2288893683 hasConcept C5274069 @default.
- W2288893683 hasConcept C78458016 @default.
- W2288893683 hasConcept C81692654 @default.
- W2288893683 hasConcept C86803240 @default.
- W2288893683 hasConceptScore W2288893683C105795698 @default.
- W2288893683 hasConceptScore W2288893683C11413529 @default.
- W2288893683 hasConceptScore W2288893683C114614502 @default.
- W2288893683 hasConceptScore W2288893683C119043178 @default.
- W2288893683 hasConceptScore W2288893683C127313418 @default.
- W2288893683 hasConceptScore W2288893683C137250428 @default.
- W2288893683 hasConceptScore W2288893683C14036430 @default.
- W2288893683 hasConceptScore W2288893683C155512373 @default.
- W2288893683 hasConceptScore W2288893683C159390177 @default.
- W2288893683 hasConceptScore W2288893683C159750122 @default.
- W2288893683 hasConceptScore W2288893683C178650346 @default.
- W2288893683 hasConceptScore W2288893683C22679943 @default.
- W2288893683 hasConceptScore W2288893683C2778067643 @default.
- W2288893683 hasConceptScore W2288893683C33923547 @default.
- W2288893683 hasConceptScore W2288893683C39464130 @default.
- W2288893683 hasConceptScore W2288893683C5274069 @default.
- W2288893683 hasConceptScore W2288893683C78458016 @default.
- W2288893683 hasConceptScore W2288893683C81692654 @default.
- W2288893683 hasConceptScore W2288893683C86803240 @default.
- W2288893683 hasFunder F4320321001 @default.
- W2288893683 hasLocation W22888936831 @default.
- W2288893683 hasOpenAccess W2288893683 @default.
- W2288893683 hasPrimaryLocation W22888936831 @default.
- W2288893683 hasRelatedWork W1968523686 @default.
- W2288893683 hasRelatedWork W1984028041 @default.
- W2288893683 hasRelatedWork W2096089271 @default.
- W2288893683 hasRelatedWork W2171362509 @default.
- W2288893683 hasRelatedWork W2511384863 @default.
- W2288893683 hasRelatedWork W2554068199 @default.
- W2288893683 hasRelatedWork W2580063968 @default.
- W2288893683 hasRelatedWork W2985746494 @default.
- W2288893683 hasRelatedWork W4206042385 @default.
- W2288893683 hasRelatedWork W68270263 @default.
- W2288893683 hasVolume "141" @default.
- W2288893683 isParatext "false" @default.