Matches in SemOpenAlex for { <https://semopenalex.org/work/W2289161862> ?p ?o ?g. }
- W2289161862 abstract "A canonical problem in computer vision is category recognition (e.g., find all instances of human faces, cars etc., in an image). Typically, the input for training a binary classifier is a relatively small sample of positive examples, and a huge sample of negative examples, which can be very diverse, consisting of images from a large number of categories. The difficulty of the problem sharply increases with the dimension and size of the negative example set. We propose to alleviate this problem by applying a hybrid classifier, which replaces the negative samples by a prior, and then finds a hyperplane which separates the positive samples from this prior. The method is extended to kernel space and to an ensemble-based approach. The resulting binary classifiers achieve an identical or better classification rate than SVM, while requiring far smaller memory and lower computational complexity to train and apply." @default.
- W2289161862 created "2016-06-24" @default.
- W2289161862 creator A5048495894 @default.
- W2289161862 creator A5064091891 @default.
- W2289161862 creator A5068276075 @default.
- W2289161862 date "2016-04-01" @default.
- W2289161862 modified "2023-09-24" @default.
- W2289161862 title "Recognition Using Hybrid Classifiers" @default.
- W2289161862 cites W1479807131 @default.
- W2289161862 cites W1480376833 @default.
- W2289161862 cites W1488833649 @default.
- W2289161862 cites W1534477342 @default.
- W2289161862 cites W1551209770 @default.
- W2289161862 cites W1551909886 @default.
- W2289161862 cites W1576445103 @default.
- W2289161862 cites W1605479404 @default.
- W2289161862 cites W1621799579 @default.
- W2289161862 cites W1625255723 @default.
- W2289161862 cites W169052826 @default.
- W2289161862 cites W1968104963 @default.
- W2289161862 cites W1989684337 @default.
- W2289161862 cites W2024046085 @default.
- W2289161862 cites W2031248101 @default.
- W2289161862 cites W2031489346 @default.
- W2289161862 cites W2035720976 @default.
- W2289161862 cites W2037511607 @default.
- W2289161862 cites W2038597090 @default.
- W2289161862 cites W2088049833 @default.
- W2289161862 cites W2097713019 @default.
- W2289161862 cites W2099695316 @default.
- W2289161862 cites W2102605133 @default.
- W2289161862 cites W2107961375 @default.
- W2289161862 cites W2109235804 @default.
- W2289161862 cites W2112020727 @default.
- W2289161862 cites W2112796928 @default.
- W2289161862 cites W2117483887 @default.
- W2289161862 cites W2121947440 @default.
- W2289161862 cites W2124372976 @default.
- W2289161862 cites W2125993116 @default.
- W2289161862 cites W2127292559 @default.
- W2289161862 cites W2131686571 @default.
- W2289161862 cites W2132870739 @default.
- W2289161862 cites W2133864802 @default.
- W2289161862 cites W2134380836 @default.
- W2289161862 cites W2137285073 @default.
- W2289161862 cites W2139451965 @default.
- W2289161862 cites W2142623206 @default.
- W2289161862 cites W2149396346 @default.
- W2289161862 cites W2151103935 @default.
- W2289161862 cites W2155754043 @default.
- W2289161862 cites W2156135142 @default.
- W2289161862 cites W2158162781 @default.
- W2289161862 cites W2158679207 @default.
- W2289161862 cites W2161106546 @default.
- W2289161862 cites W2161969291 @default.
- W2289161862 cites W2162708558 @default.
- W2289161862 cites W2162915993 @default.
- W2289161862 cites W2163605009 @default.
- W2289161862 cites W2166473218 @default.
- W2289161862 cites W2189508540 @default.
- W2289161862 cites W2435338979 @default.
- W2289161862 cites W3120740533 @default.
- W2289161862 cites W62822017 @default.
- W2289161862 cites W82130502 @default.
- W2289161862 doi "https://doi.org/10.1109/tpami.2015.2465910" @default.
- W2289161862 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26959677" @default.
- W2289161862 hasPublicationYear "2016" @default.
- W2289161862 type Work @default.
- W2289161862 sameAs 2289161862 @default.
- W2289161862 citedByCount "8" @default.
- W2289161862 countsByYear W22891618622018 @default.
- W2289161862 countsByYear W22891618622019 @default.
- W2289161862 countsByYear W22891618622020 @default.
- W2289161862 countsByYear W22891618622021 @default.
- W2289161862 crossrefType "journal-article" @default.
- W2289161862 hasAuthorship W2289161862A5048495894 @default.
- W2289161862 hasAuthorship W2289161862A5064091891 @default.
- W2289161862 hasAuthorship W2289161862A5068276075 @default.
- W2289161862 hasBestOaLocation W22891618622 @default.
- W2289161862 hasConcept C106135958 @default.
- W2289161862 hasConcept C11413529 @default.
- W2289161862 hasConcept C114614502 @default.
- W2289161862 hasConcept C115961682 @default.
- W2289161862 hasConcept C119857082 @default.
- W2289161862 hasConcept C12267149 @default.
- W2289161862 hasConcept C153180895 @default.
- W2289161862 hasConcept C154945302 @default.
- W2289161862 hasConcept C179799912 @default.
- W2289161862 hasConcept C2524010 @default.
- W2289161862 hasConcept C33923547 @default.
- W2289161862 hasConcept C41008148 @default.
- W2289161862 hasConcept C48372109 @default.
- W2289161862 hasConcept C66905080 @default.
- W2289161862 hasConcept C68693459 @default.
- W2289161862 hasConcept C74193536 @default.
- W2289161862 hasConcept C75294576 @default.
- W2289161862 hasConcept C94375191 @default.
- W2289161862 hasConcept C95623464 @default.
- W2289161862 hasConceptScore W2289161862C106135958 @default.
- W2289161862 hasConceptScore W2289161862C11413529 @default.