Matches in SemOpenAlex for { <https://semopenalex.org/work/W2289370010> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2289370010 endingPage "55" @default.
- W2289370010 startingPage "1" @default.
- W2289370010 abstract "We consider a class of homogeneous partial differential operators on a finite-dimensional vector space and study their associated heat kernels. The heat kernels for this general class of operators are seen to arise naturally as the limiting objects of the convolution powers of complex-valued functions on the square lattice in the way that the classical heat kernel arises in the (local) central limit theorem. These so-called positive-homogeneous operators generalize the class of semi-elliptic operators in the sense that the definition is coordinate-free. More generally, we introduce a class of variable-coefficient operators, each of which is uniformly comparable to a positive-homogeneous operator, and we study the corresponding Cauchy problem for the heat equation. Under the assumption that such an operator has Holder continuous coefficients, we construct a fundamental solution to its heat equation by the method of Levi, adapted to parabolic systems by Friedman and Eidelman. Though our results in this direction are implied by the long-known results of Eidelman for (2mathbf{b})-parabolic systems, our focus is to highlight the role played by the Legendre-Fenchel transform in heat kernel estimates. Specifically, we show that the fundamental solution satisfies an off-diagonal estimate, i.e., a heat kernel estimate, written in terms of the Legendre-Fenchel transform of the operator’s principal symbol—an estimate which is seen to be sharp in many cases." @default.
- W2289370010 created "2016-06-24" @default.
- W2289370010 creator A5067207257 @default.
- W2289370010 creator A5074750513 @default.
- W2289370010 date "2017-01-01" @default.
- W2289370010 modified "2023-10-16" @default.
- W2289370010 title "Positive-Homogeneous Operators, Heat Kernel Estimates and the Legendre-Fenchel Transform" @default.
- W2289370010 cites W155467049 @default.
- W2289370010 cites W1967559334 @default.
- W2289370010 cites W1970131222 @default.
- W2289370010 cites W1972790881 @default.
- W2289370010 cites W1994588928 @default.
- W2289370010 cites W1998239753 @default.
- W2289370010 cites W2017772091 @default.
- W2289370010 cites W2020053780 @default.
- W2289370010 cites W2022969654 @default.
- W2289370010 cites W2023302550 @default.
- W2289370010 cites W2024212709 @default.
- W2289370010 cites W2030366154 @default.
- W2289370010 cites W2033287169 @default.
- W2289370010 cites W2041026549 @default.
- W2289370010 cites W2048453538 @default.
- W2289370010 cites W2057929125 @default.
- W2289370010 cites W2059456999 @default.
- W2289370010 cites W2060061044 @default.
- W2289370010 cites W2063821026 @default.
- W2289370010 cites W2067187482 @default.
- W2289370010 cites W2074195782 @default.
- W2289370010 cites W2075204363 @default.
- W2289370010 cites W2083851275 @default.
- W2289370010 cites W2084468775 @default.
- W2289370010 cites W2094940895 @default.
- W2289370010 cites W2125327383 @default.
- W2289370010 cites W2332932579 @default.
- W2289370010 cites W2486411918 @default.
- W2289370010 cites W2809507030 @default.
- W2289370010 cites W2944251863 @default.
- W2289370010 cites W2963171853 @default.
- W2289370010 cites W4213248042 @default.
- W2289370010 cites W4230808427 @default.
- W2289370010 cites W4256204707 @default.
- W2289370010 cites W589246141 @default.
- W2289370010 cites W633878627 @default.
- W2289370010 cites W757737517 @default.
- W2289370010 cites W991959198 @default.
- W2289370010 doi "https://doi.org/10.1007/978-3-319-59671-6_1" @default.
- W2289370010 hasPublicationYear "2017" @default.
- W2289370010 type Work @default.
- W2289370010 sameAs 2289370010 @default.
- W2289370010 citedByCount "3" @default.
- W2289370010 countsByYear W22893700102020 @default.
- W2289370010 countsByYear W22893700102021 @default.
- W2289370010 countsByYear W22893700102022 @default.
- W2289370010 crossrefType "book-chapter" @default.
- W2289370010 hasAuthorship W2289370010A5067207257 @default.
- W2289370010 hasAuthorship W2289370010A5074750513 @default.
- W2289370010 hasBestOaLocation W22893700102 @default.
- W2289370010 hasConcept C111458787 @default.
- W2289370010 hasConcept C114614502 @default.
- W2289370010 hasConcept C134306372 @default.
- W2289370010 hasConcept C183212220 @default.
- W2289370010 hasConcept C202444582 @default.
- W2289370010 hasConcept C28826006 @default.
- W2289370010 hasConcept C33923547 @default.
- W2289370010 hasConcept C66882249 @default.
- W2289370010 hasConcept C74193536 @default.
- W2289370010 hasConceptScore W2289370010C111458787 @default.
- W2289370010 hasConceptScore W2289370010C114614502 @default.
- W2289370010 hasConceptScore W2289370010C134306372 @default.
- W2289370010 hasConceptScore W2289370010C183212220 @default.
- W2289370010 hasConceptScore W2289370010C202444582 @default.
- W2289370010 hasConceptScore W2289370010C28826006 @default.
- W2289370010 hasConceptScore W2289370010C33923547 @default.
- W2289370010 hasConceptScore W2289370010C66882249 @default.
- W2289370010 hasConceptScore W2289370010C74193536 @default.
- W2289370010 hasLocation W22893700101 @default.
- W2289370010 hasLocation W22893700102 @default.
- W2289370010 hasOpenAccess W2289370010 @default.
- W2289370010 hasPrimaryLocation W22893700101 @default.
- W2289370010 hasRelatedWork W1965315681 @default.
- W2289370010 hasRelatedWork W1998713743 @default.
- W2289370010 hasRelatedWork W2025543687 @default.
- W2289370010 hasRelatedWork W2033536062 @default.
- W2289370010 hasRelatedWork W2076330416 @default.
- W2289370010 hasRelatedWork W2387421936 @default.
- W2289370010 hasRelatedWork W2530759442 @default.
- W2289370010 hasRelatedWork W2897236629 @default.
- W2289370010 hasRelatedWork W3093146685 @default.
- W2289370010 hasRelatedWork W4226242517 @default.
- W2289370010 isParatext "false" @default.
- W2289370010 isRetracted "false" @default.
- W2289370010 magId "2289370010" @default.
- W2289370010 workType "book-chapter" @default.