Matches in SemOpenAlex for { <https://semopenalex.org/work/W2289474932> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W2289474932 abstract "This thesis deals with x-ray reflectivity (XRR) analysis. XRR is a very accurate technique for the metrology of thin films but the analysis of measurements has been difficult thus limiting every day material research. In this thesis, novel genetic algorithms (GAs) for XRR curve fitting and statistical error analysis methods are developed. The XRR analysis utilizes very accurate Parratt's formalism combined with Nevot–Croce interface roughness. The analysis concentrates on the atomic layer deposited materials by using models mimicking their properties. The properties of GAs are studied using aluminium oxide/zinc oxide nanolaminate models. Models of aluminium oxide layers on silicon substrate are used in the case of the error analysis. The demonstrated novel GAs are utilizing the rotation of coordinates during the crossover phase to reduce interparameter dependencies. The new basis is formed from the eigenvectors of Hessian and statistical covariance matrices. The crossover is performed in the rotated coordinates and the new combinations are transformed back to the original coordinates. It is shown that the coordinate rotation improves the convergence properties of GAs in complex XRR curve fitting problems and a statistical approach is more powerful than the Hessian matrix method. Furthermore, a GA using independent component analysis gives additional robustness to the curve fitting by utilizing a nonorthogonal linear transformation technique. The interdependency of XRR parameters is studied using fitness landscapes. The fitness landscape analysis utilizes subspace projection of the original parameter space where the projection is done using an experimental model. The work reveals that the error in the determined mass density can compensate the error in surface roughness thus diminishing the accuracy of both of these parameters. This result is also verified later with other methods. The effect of Poisson noise on the accuracy of XRR analysis is studied statistically. Thickness determination accuracy of an aluminium oxide layer is ±0.09 nm with 99% confidence in the studied case which represents the lower limit for the error. Here the analysis assumed a perfect fit to the measurement. The upper error is achieved by taking into account a nonideal fit by separating the effect of noise from the fitness value. In a case of the studied measurement, the determined thickness error is ±0.12 nm with 99% confidence." @default.
- W2289474932 created "2016-06-24" @default.
- W2289474932 creator A5008425711 @default.
- W2289474932 date "2008-01-01" @default.
- W2289474932 modified "2023-09-23" @default.
- W2289474932 title "Novel genetic fitting algorithms and statistical error analysis methods for X-ray reflectivity analysis" @default.
- W2289474932 cites W2015833241 @default.
- W2289474932 cites W2020047623 @default.
- W2289474932 cites W2046742479 @default.
- W2289474932 cites W2491502393 @default.
- W2289474932 cites W3102715269 @default.
- W2289474932 hasPublicationYear "2008" @default.
- W2289474932 type Work @default.
- W2289474932 sameAs 2289474932 @default.
- W2289474932 citedByCount "0" @default.
- W2289474932 crossrefType "journal-article" @default.
- W2289474932 hasAuthorship W2289474932A5008425711 @default.
- W2289474932 hasConcept C105795698 @default.
- W2289474932 hasConcept C11413529 @default.
- W2289474932 hasConcept C171250308 @default.
- W2289474932 hasConcept C184389593 @default.
- W2289474932 hasConcept C19067145 @default.
- W2289474932 hasConcept C192562407 @default.
- W2289474932 hasConcept C33923547 @default.
- W2289474932 hasConcept C41008148 @default.
- W2289474932 hasConcept C55148256 @default.
- W2289474932 hasConcept C57493831 @default.
- W2289474932 hasConceptScore W2289474932C105795698 @default.
- W2289474932 hasConceptScore W2289474932C11413529 @default.
- W2289474932 hasConceptScore W2289474932C171250308 @default.
- W2289474932 hasConceptScore W2289474932C184389593 @default.
- W2289474932 hasConceptScore W2289474932C19067145 @default.
- W2289474932 hasConceptScore W2289474932C192562407 @default.
- W2289474932 hasConceptScore W2289474932C33923547 @default.
- W2289474932 hasConceptScore W2289474932C41008148 @default.
- W2289474932 hasConceptScore W2289474932C55148256 @default.
- W2289474932 hasConceptScore W2289474932C57493831 @default.
- W2289474932 hasLocation W22894749321 @default.
- W2289474932 hasOpenAccess W2289474932 @default.
- W2289474932 hasPrimaryLocation W22894749321 @default.
- W2289474932 hasRelatedWork W1504585790 @default.
- W2289474932 hasRelatedWork W1542149688 @default.
- W2289474932 hasRelatedWork W1963933562 @default.
- W2289474932 hasRelatedWork W1983594129 @default.
- W2289474932 hasRelatedWork W1997387218 @default.
- W2289474932 hasRelatedWork W2005607420 @default.
- W2289474932 hasRelatedWork W2027929314 @default.
- W2289474932 hasRelatedWork W2036079358 @default.
- W2289474932 hasRelatedWork W2057179109 @default.
- W2289474932 hasRelatedWork W2062868220 @default.
- W2289474932 hasRelatedWork W2079691839 @default.
- W2289474932 hasRelatedWork W2080764475 @default.
- W2289474932 hasRelatedWork W2094983545 @default.
- W2289474932 hasRelatedWork W2325565189 @default.
- W2289474932 hasRelatedWork W2382426190 @default.
- W2289474932 hasRelatedWork W2394680148 @default.
- W2289474932 hasRelatedWork W2901360807 @default.
- W2289474932 hasRelatedWork W3202440889 @default.
- W2289474932 hasRelatedWork W2136803733 @default.
- W2289474932 hasRelatedWork W2962429426 @default.
- W2289474932 isParatext "false" @default.
- W2289474932 isRetracted "false" @default.
- W2289474932 magId "2289474932" @default.
- W2289474932 workType "article" @default.