Matches in SemOpenAlex for { <https://semopenalex.org/work/W2289621138> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W2289621138 endingPage "89" @default.
- W2289621138 startingPage "89" @default.
- W2289621138 abstract "In this dissertation, we present mining framework to extract useful pattern, concept, and topic from multi-dimensional dataset using clustering. In general, there are two kinds of datasets, incremental data and static data. Incremental data is the one where data items are inserted over time. However, not all datasets are incremental. In many cases, with static data, there is no incremental insertion. Thus, depending on the nature of data, relevant data mining algorithms should be developed. Thus, this dissertation is basically composed of two parts: incremental clustering for incremental data, and batch clustering for static data. For incremental data, we target news streams, and for static data, we target gene expression data. In the first part, we propose a mining framework that supports the identification of useful patterns based on incremental data clustering. Given the popularity of Web news services, we focus our attention on news streams mining. A key challenging issue within news repository management is the high rate of document insertion. To address this problem, we present an incremental hierarchical document clustering algorithm using a neighborhood search. The novelty of the proposed algorithm is the ability to identify meaningful patterns (e.g., news events, and news topics) while reducing the amount of computations by maintaining cluster structure incrementally. In addition, we propose a topic ontology learning framework that utilizes the obtained document hierarchy. Experimental results demonstrate that the proposed clustering algorithm produces high-quality clusters, and a topic ontology provides interpretations of news topics at different levels of abstraction. In the second part, we focus our attention on mining yeast cell cycle dataset. In molecular biology, a set of co-expressed genes tend to share a common biological function. Thus, it is essential to develop an effective clustering algorithm to identify the set of co-expressed genes. Toward this end, we propose genome-wide expression clustering based on a density-based approach. By addressing the strengths and limitations of previous density-based clustering approaches, we present a novel density clustering algorithm, which utilizes a neighborhood defined by k-nearest mutual neighbors. Experimental results indicate that the proposed method successfully identifies co-expressed and biologically meaningful gene clusters." @default.
- W2289621138 created "2016-06-24" @default.
- W2289621138 creator A5010696044 @default.
- W2289621138 creator A5090330984 @default.
- W2289621138 date "2005-01-01" @default.
- W2289621138 modified "2023-09-26" @default.
- W2289621138 title "Concept, topic, and pattern discovery using clustering" @default.
- W2289621138 hasPublicationYear "2005" @default.
- W2289621138 type Work @default.
- W2289621138 sameAs 2289621138 @default.
- W2289621138 citedByCount "0" @default.
- W2289621138 crossrefType "journal-article" @default.
- W2289621138 hasAuthorship W2289621138A5010696044 @default.
- W2289621138 hasAuthorship W2289621138A5090330984 @default.
- W2289621138 hasConcept C119857082 @default.
- W2289621138 hasConcept C124101348 @default.
- W2289621138 hasConcept C17212007 @default.
- W2289621138 hasConcept C184509293 @default.
- W2289621138 hasConcept C193143536 @default.
- W2289621138 hasConcept C23123220 @default.
- W2289621138 hasConcept C33704608 @default.
- W2289621138 hasConcept C41008148 @default.
- W2289621138 hasConcept C73555534 @default.
- W2289621138 hasConcept C89198739 @default.
- W2289621138 hasConceptScore W2289621138C119857082 @default.
- W2289621138 hasConceptScore W2289621138C124101348 @default.
- W2289621138 hasConceptScore W2289621138C17212007 @default.
- W2289621138 hasConceptScore W2289621138C184509293 @default.
- W2289621138 hasConceptScore W2289621138C193143536 @default.
- W2289621138 hasConceptScore W2289621138C23123220 @default.
- W2289621138 hasConceptScore W2289621138C33704608 @default.
- W2289621138 hasConceptScore W2289621138C41008148 @default.
- W2289621138 hasConceptScore W2289621138C73555534 @default.
- W2289621138 hasConceptScore W2289621138C89198739 @default.
- W2289621138 hasLocation W22896211381 @default.
- W2289621138 hasOpenAccess W2289621138 @default.
- W2289621138 hasPrimaryLocation W22896211381 @default.
- W2289621138 hasRelatedWork W1499377856 @default.
- W2289621138 hasRelatedWork W1991676464 @default.
- W2289621138 hasRelatedWork W2038793125 @default.
- W2289621138 hasRelatedWork W2039346806 @default.
- W2289621138 hasRelatedWork W2045248798 @default.
- W2289621138 hasRelatedWork W2056718413 @default.
- W2289621138 hasRelatedWork W2064532749 @default.
- W2289621138 hasRelatedWork W2071416419 @default.
- W2289621138 hasRelatedWork W2085193192 @default.
- W2289621138 hasRelatedWork W2160799467 @default.
- W2289621138 hasRelatedWork W2162662176 @default.
- W2289621138 hasRelatedWork W2571452675 @default.
- W2289621138 hasRelatedWork W2573168276 @default.
- W2289621138 hasRelatedWork W2710166953 @default.
- W2289621138 hasRelatedWork W2899229039 @default.
- W2289621138 hasRelatedWork W2945076599 @default.
- W2289621138 hasRelatedWork W2949985362 @default.
- W2289621138 hasRelatedWork W2964291985 @default.
- W2289621138 hasRelatedWork W304239299 @default.
- W2289621138 hasRelatedWork W3198756702 @default.
- W2289621138 isParatext "false" @default.
- W2289621138 isRetracted "false" @default.
- W2289621138 magId "2289621138" @default.
- W2289621138 workType "article" @default.