Matches in SemOpenAlex for { <https://semopenalex.org/work/W2289959132> ?p ?o ?g. }
- W2289959132 abstract "Computational Inference for Network-based Individual-level Models of Infectious Disease Transmission Jourdan C. Gold Advisor: University of Guelph, 2015 Dr. Rob Deardon Infectious disease data is very often only partially observed; for example, the exact time of infection for an individual is generally missing, or it may be measured only approximately due to effects of measurement error. We can account for such data uncertainty in our analysis. However, doing so may cause computational problems. In the first part of this thesis, a simulation study is performed to ascertain the consequences of ignoring infection-time uncertainty. We detail results obtained on the trade-off between model-inferential quality and computation time by using a family of discrete-time heterogeneous infectious disease transmission models known as individual-level models (ILMs). We focus particularly on network-based ILMs fitted by using Markov chain Monte Carlo (MCMC) under a Bayesian framework. Modeling approaches undertaken vary from those under “fixed data” assumptions to those under a “full data augmentation approach”. The impact of applying a misspecified distribution to describe the infectious period distribution is also considered. Methods that may help to overcome the inferential and/or computational issues involved in the use of such models are examined. In the second part, we quantify the ability of aggregated infectious disease transmission data obtained under varying levels of clustering to produce a substantive reduction in computation-time requirements for approximating the posterior distribution while maintaining data quality. Results obtained via different clustering assumptions are compared. We also examine the effect of using different model terms to account for inter-cluster variability when fitting ILMs to aggregated data. We consider the impact of linear effects on the fit as well as the impact when this assumption is relaxed. Finally, an investigation of the effectiveness of various MCMC algorithms in sampling from a series of highly correlated, discrete target distributions is performed. Relative effectiveness of various adaptive multistage MCMC approaches, based upon hybrid combinations of independence samplers, is considered. Results are compared to those obtained from traditional single-stage MCMC algorithms and a direct Monte Carlo method (our gold standard). Root mean square error, mean absolute difference, and effective sample size rate are used to assess and compare performance of these algorithms. To my Parents, Frank and Joie Gold with all of my love" @default.
- W2289959132 created "2016-06-24" @default.
- W2289959132 creator A5024225426 @default.
- W2289959132 date "2015-01-09" @default.
- W2289959132 modified "2023-09-23" @default.
- W2289959132 title "Computational Inference for Network-based Individual-level Models of Infectious Disease Transmission" @default.
- W2289959132 cites W114870970 @default.
- W2289959132 cites W1537250304 @default.
- W2289959132 cites W1540089290 @default.
- W2289959132 cites W1608691223 @default.
- W2289959132 cites W1963509809 @default.
- W2289959132 cites W1965005960 @default.
- W2289959132 cites W1967386494 @default.
- W2289959132 cites W1975205625 @default.
- W2289959132 cites W1995093711 @default.
- W2289959132 cites W1995780830 @default.
- W2289959132 cites W1996977322 @default.
- W2289959132 cites W2012379892 @default.
- W2289959132 cites W2013546519 @default.
- W2289959132 cites W2017899835 @default.
- W2289959132 cites W2027847971 @default.
- W2289959132 cites W2032460042 @default.
- W2289959132 cites W2045656233 @default.
- W2289959132 cites W2047978125 @default.
- W2289959132 cites W2064766914 @default.
- W2289959132 cites W2065570119 @default.
- W2289959132 cites W2069739265 @default.
- W2289959132 cites W2071176723 @default.
- W2289959132 cites W2073627497 @default.
- W2289959132 cites W2077793292 @default.
- W2289959132 cites W2079779136 @default.
- W2289959132 cites W2081775418 @default.
- W2289959132 cites W2082610369 @default.
- W2289959132 cites W2083620785 @default.
- W2289959132 cites W2091196235 @default.
- W2289959132 cites W2097025153 @default.
- W2289959132 cites W2104256976 @default.
- W2289959132 cites W2108207895 @default.
- W2289959132 cites W2114205889 @default.
- W2289959132 cites W2121233303 @default.
- W2289959132 cites W2121917753 @default.
- W2289959132 cites W2121941395 @default.
- W2289959132 cites W2125450142 @default.
- W2289959132 cites W2128232522 @default.
- W2289959132 cites W2135973421 @default.
- W2289959132 cites W2145914242 @default.
- W2289959132 cites W2149096153 @default.
- W2289959132 cites W2154416797 @default.
- W2289959132 cites W2157785238 @default.
- W2289959132 cites W2162554556 @default.
- W2289959132 cites W2166022262 @default.
- W2289959132 cites W2166123755 @default.
- W2289959132 cites W2168340174 @default.
- W2289959132 cites W2169760521 @default.
- W2289959132 cites W2605394084 @default.
- W2289959132 cites W2764485636 @default.
- W2289959132 cites W650496038 @default.
- W2289959132 cites W656236630 @default.
- W2289959132 cites W74953171 @default.
- W2289959132 hasPublicationYear "2015" @default.
- W2289959132 type Work @default.
- W2289959132 sameAs 2289959132 @default.
- W2289959132 citedByCount "0" @default.
- W2289959132 crossrefType "dissertation" @default.
- W2289959132 hasAuthorship W2289959132A5024225426 @default.
- W2289959132 hasConcept C105795698 @default.
- W2289959132 hasConcept C107673813 @default.
- W2289959132 hasConcept C111350023 @default.
- W2289959132 hasConcept C11413529 @default.
- W2289959132 hasConcept C119857082 @default.
- W2289959132 hasConcept C124101348 @default.
- W2289959132 hasConcept C134261354 @default.
- W2289959132 hasConcept C142724271 @default.
- W2289959132 hasConcept C154945302 @default.
- W2289959132 hasConcept C160234255 @default.
- W2289959132 hasConcept C2776214188 @default.
- W2289959132 hasConcept C2779134260 @default.
- W2289959132 hasConcept C2779377595 @default.
- W2289959132 hasConcept C33923547 @default.
- W2289959132 hasConcept C41008148 @default.
- W2289959132 hasConcept C45374587 @default.
- W2289959132 hasConcept C524204448 @default.
- W2289959132 hasConcept C71924100 @default.
- W2289959132 hasConcept C73555534 @default.
- W2289959132 hasConcept C98763669 @default.
- W2289959132 hasConceptScore W2289959132C105795698 @default.
- W2289959132 hasConceptScore W2289959132C107673813 @default.
- W2289959132 hasConceptScore W2289959132C111350023 @default.
- W2289959132 hasConceptScore W2289959132C11413529 @default.
- W2289959132 hasConceptScore W2289959132C119857082 @default.
- W2289959132 hasConceptScore W2289959132C124101348 @default.
- W2289959132 hasConceptScore W2289959132C134261354 @default.
- W2289959132 hasConceptScore W2289959132C142724271 @default.
- W2289959132 hasConceptScore W2289959132C154945302 @default.
- W2289959132 hasConceptScore W2289959132C160234255 @default.
- W2289959132 hasConceptScore W2289959132C2776214188 @default.
- W2289959132 hasConceptScore W2289959132C2779134260 @default.
- W2289959132 hasConceptScore W2289959132C2779377595 @default.
- W2289959132 hasConceptScore W2289959132C33923547 @default.
- W2289959132 hasConceptScore W2289959132C41008148 @default.