Matches in SemOpenAlex for { <https://semopenalex.org/work/W2290111645> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2290111645 abstract "Lithium-ion batteries have become the choice of power source for portable electronic devices due to their higher energy density compared to the other rechargeable battery systems. They are also being pursued intensively for automotive and stationary storage applications. However, the currently used graphite anode has the drawbacks of limited capacity and safety concerns. Particularly, the chemical instability arising from the formation of solid-electrolyte interfacial (SEI) layer by a reaction of the carbon anode surface with the electrolyte and the lithium plating on the SEI layer due to a charge/discharge potential close to that of Li/Li pose serious safety concerns. These difficulties have created enormous interest in the development of alternate anode materials for lithium-ion batteries. Among the various possible anode alternatives pursued, crystalline TiO2 (335 mAh/g) have been suggested as one of the most promising candidates to replace graphite due to its excellent physicochemical properties and environmentally benign. In the TiO2 crystal structure, the TiO6 octahedra share vertices and edges to build a three-dimensional framework, leaving favorable empty sites available for lithium insertion. Accordingly, TiO2 can accommodate theoretically one lithium per formula unit as LixTiO2 (0 ≤ x ≤ 1), involving the Ti redox couple. TiO2 for lithium ion batteries offers several attractive features such as a low volume change (~ 4%) during the charge-discharge process, abundant, low production cost, and low toxicity. Interestingly, with an operating voltage well above that of Li/Li and less surface reactivity with the electrolyte, it offers better safety than graphite. Although the working potential of TiO2 is high for a negative electrode, its electrochemical stability in common electrolytes and the absence of formation of harmful solid-electrolyte interfacial (SEI) layers result in better overcharge protection and safety. With a well-known phases, various crystalline phases such as rutile, brookite, TiO2 (B), and anatase have been identified for crystalline TiO2. The rutile phase is the thermodynamically most stable under standard conditions. In the case of micrometer sized rutile particles, only a small amount of lithium (0.1 0.25 per formula) could be inserted into the lattice. The brookite phase is the least stable so that only few studies have been devoted to its use lithium ion batteries due to its difficulty in preparing. TiO2 (B) is monoclinic, and the kinetics of reaction of microfibrous TiO2 (B) with lithium ion has recently been reported to be controlled by a pseudocapacitive faradaic process. Anatase phase is metastable, but anatase and rutile phase are generally considered to be the lithium ion host among the various polymorphs of TiO2, which have been extensively studied [1]. To gain theoretical capacity stability, however, they should be achieved by the use of nanostructured TiO2 materials. The nanomaterials play a major role in energy storage devices due to their increased electrochemical activity. It also has a flip side, nevertheless, such as low volumetric energy density and more significant side reaction corresponding with high electrolyte/electrode surface area. A wide variety of approaches have been pursued to develop some novel and unexpected properties over the years for the synthesis of polymorphs of TiO2 nanomaterials such as nanorods, nanowires, and nanotubes, nanoflowers, including, precipitation, hydrothermal reaction, sol-gel process, solution-phase reaction, and templating methods. Particularly, there is an increased activity worldwide in utilizing the 1-, 2-, and 3dimensional nanostructured material to improve the performance of the lithium ion batteries. Nanostructured TiO2 material with large surface area accommodates the strain occurring during cycling and readily access to electrolyte which leads to reduce diffusion pathway for electronic/ionic transport, resulting in excellent power density [2,3]. Accordingly, this study focuses on the synthesis and characterization by developing mesoporous TiO2 with nitrogen adsorption on the surface. This surface modification will achieve the aim of enhanced performance without sacrificing safety and battery life characteristics. We will report in detail about the latest results achieved on the mesoporous TiO2 sphere with nitrogen adsorption for use as anodes in lithium-ion batteries." @default.
- W2290111645 created "2016-06-24" @default.
- W2290111645 creator A5027892976 @default.
- W2290111645 creator A5064524252 @default.
- W2290111645 creator A5068405262 @default.
- W2290111645 date "2011-01-01" @default.
- W2290111645 modified "2023-09-27" @default.
- W2290111645 title "Mesoporous TiO2 Sphere with Nitrogen Adsorption for Lithium-Ion Batteries" @default.
- W2290111645 doi "https://doi.org/10.1149/ma2011-02/7/383" @default.
- W2290111645 hasPublicationYear "2011" @default.
- W2290111645 type Work @default.
- W2290111645 sameAs 2290111645 @default.
- W2290111645 citedByCount "0" @default.
- W2290111645 crossrefType "journal-article" @default.
- W2290111645 hasAuthorship W2290111645A5027892976 @default.
- W2290111645 hasAuthorship W2290111645A5064524252 @default.
- W2290111645 hasAuthorship W2290111645A5068405262 @default.
- W2290111645 hasConcept C121332964 @default.
- W2290111645 hasConcept C127413603 @default.
- W2290111645 hasConcept C134018914 @default.
- W2290111645 hasConcept C147789679 @default.
- W2290111645 hasConcept C159985019 @default.
- W2290111645 hasConcept C161790260 @default.
- W2290111645 hasConcept C163258240 @default.
- W2290111645 hasConcept C171250308 @default.
- W2290111645 hasConcept C17525397 @default.
- W2290111645 hasConcept C178790620 @default.
- W2290111645 hasConcept C185592680 @default.
- W2290111645 hasConcept C192562407 @default.
- W2290111645 hasConcept C2778541603 @default.
- W2290111645 hasConcept C2779698641 @default.
- W2290111645 hasConcept C42360764 @default.
- W2290111645 hasConcept C555008776 @default.
- W2290111645 hasConcept C62520636 @default.
- W2290111645 hasConcept C68801617 @default.
- W2290111645 hasConcept C71924100 @default.
- W2290111645 hasConcept C82776694 @default.
- W2290111645 hasConcept C89395315 @default.
- W2290111645 hasConceptScore W2290111645C121332964 @default.
- W2290111645 hasConceptScore W2290111645C127413603 @default.
- W2290111645 hasConceptScore W2290111645C134018914 @default.
- W2290111645 hasConceptScore W2290111645C147789679 @default.
- W2290111645 hasConceptScore W2290111645C159985019 @default.
- W2290111645 hasConceptScore W2290111645C161790260 @default.
- W2290111645 hasConceptScore W2290111645C163258240 @default.
- W2290111645 hasConceptScore W2290111645C171250308 @default.
- W2290111645 hasConceptScore W2290111645C17525397 @default.
- W2290111645 hasConceptScore W2290111645C178790620 @default.
- W2290111645 hasConceptScore W2290111645C185592680 @default.
- W2290111645 hasConceptScore W2290111645C192562407 @default.
- W2290111645 hasConceptScore W2290111645C2778541603 @default.
- W2290111645 hasConceptScore W2290111645C2779698641 @default.
- W2290111645 hasConceptScore W2290111645C42360764 @default.
- W2290111645 hasConceptScore W2290111645C555008776 @default.
- W2290111645 hasConceptScore W2290111645C62520636 @default.
- W2290111645 hasConceptScore W2290111645C68801617 @default.
- W2290111645 hasConceptScore W2290111645C71924100 @default.
- W2290111645 hasConceptScore W2290111645C82776694 @default.
- W2290111645 hasConceptScore W2290111645C89395315 @default.
- W2290111645 hasLocation W22901116451 @default.
- W2290111645 hasOpenAccess W2290111645 @default.
- W2290111645 hasPrimaryLocation W22901116451 @default.
- W2290111645 hasRelatedWork W1955033730 @default.
- W2290111645 hasRelatedWork W1980747973 @default.
- W2290111645 hasRelatedWork W2045657463 @default.
- W2290111645 hasRelatedWork W2048547778 @default.
- W2290111645 hasRelatedWork W2130279520 @default.
- W2290111645 hasRelatedWork W2138210747 @default.
- W2290111645 hasRelatedWork W2155270247 @default.
- W2290111645 hasRelatedWork W2312255598 @default.
- W2290111645 hasRelatedWork W2511466180 @default.
- W2290111645 hasRelatedWork W2735080351 @default.
- W2290111645 hasRelatedWork W2758485278 @default.
- W2290111645 hasRelatedWork W2773683641 @default.
- W2290111645 hasRelatedWork W2864373609 @default.
- W2290111645 hasRelatedWork W2943984705 @default.
- W2290111645 hasRelatedWork W2951078484 @default.
- W2290111645 hasRelatedWork W2954749218 @default.
- W2290111645 hasRelatedWork W2966386741 @default.
- W2290111645 hasRelatedWork W2996543921 @default.
- W2290111645 hasRelatedWork W3042109237 @default.
- W2290111645 hasRelatedWork W3114342996 @default.
- W2290111645 isParatext "false" @default.
- W2290111645 isRetracted "false" @default.
- W2290111645 magId "2290111645" @default.
- W2290111645 workType "article" @default.