Matches in SemOpenAlex for { <https://semopenalex.org/work/W2290767830> ?p ?o ?g. }
Showing items 1 to 50 of
50
with 100 items per page.
- W2290767830 abstract "Linear source-filter theory has been successfully applied to voice analysis and synthesis for half a century (Fant, 1960). It is based on the strong assumption that source and filter can be modeled separately from each other, and do not interact. This is of course a first-order approximation of the physics of voice production. Several source-filter interaction effects may be observed on glottal flow, such as glottal pulse skewing and formant ripples (Childers and Wong, 1994). Glottal pulse skewing depends on vocal-tract acoustical loading, and it is one aspect of source-filter interaction which has been included in glottal flow models (speed quotient or asymmetry coefficient, Doval et al., 2006). Yet there is little quantitative knowledge about how glottal parameters may vary as a function of source-filter interaction. To explore further this question, a physically-based synthesizer has been used. It is based on a modified two-mass model of the vocal folds coupled to fluid flow description (Ruty et al., 2007). It includes a moving separating point of the airflow within glottal geometry. This model can produce oscillations (flow induced vibrations), and can be considered as a sound source. The produced acoustic wave propagates into a simple description of the vocal tract, which is based on linear acoustics. We can choose to take into account acoustical pressure to calculate transglottal pressure drop. Thus, the synthesizer can be run with (interactive) or without (non-interactive) acoustical feedback on the source. We present the variations in glottal-flow parameters between the interactive and noninteractive conditions. The parameters of interest here are the fundamental period, the open quotient and the asymmetry coefficient (equivalent to speed quotient). Fundamental period is calculated as the duration between two glottal closing instants detected on the synthesized glottal-flow pulse derivative. Glottal open time is measured as the duration between a glottal opening instant and the following glottal closing instant. Glottal opening time is measured as the duration between a glottal opening instant and the following instant of maximal glottal flow. Open quotient is derived as the ratio between glottal open time and fundamental period. Asymmetry coefficient is derived as the ratio between glottal opening time and glottal open time. For a fixed two-mass model configuration, the acoustical feedback is found to affect all glottal parameters, including the glottal fundamental frequency. As expected, modifications in vocaltract geometry only have an impact in the interactive condition. It affects mainly glottal-pulse skewing, but we can also notice an increase of the open quotient, and an increase of the fundamental frequency. References Childers, D. G. & Wong, C. F. (1994) Measuring and modeling vocal source-tract interaction., IEEE Trans Biomed Eng, vol. 41, n°7, pp. 663-671. Doval B., d'Alessandro C. and Henrich N. (2006) The spectrum of glottal flow models, Acta Acustica united with Acustica, vol. 92, pp. 1026-1046. Fant G. (1960) Acoustic theory of speech production. Mouton, La Hague N. Ruty, X. Pelorson, A. Van Hirtum, I. Lopez-Arteaga, A. Hirschberg. (2007) An in-vitro setup to test the relevance and the accuracy of low-order vocal folds models, The Journal of the Acoustical Society of America, vol. 121(1), pp. 479-490" @default.
- W2290767830 created "2016-06-24" @default.
- W2290767830 creator A5028844936 @default.
- W2290767830 creator A5050162458 @default.
- W2290767830 creator A5057698290 @default.
- W2290767830 creator A5073778970 @default.
- W2290767830 date "2010-09-10" @default.
- W2290767830 modified "2023-09-26" @default.
- W2290767830 title "How do source-filter interactions reflects on glottal-flow parameters?" @default.
- W2290767830 hasPublicationYear "2010" @default.
- W2290767830 type Work @default.
- W2290767830 sameAs 2290767830 @default.
- W2290767830 citedByCount "0" @default.
- W2290767830 crossrefType "proceedings-article" @default.
- W2290767830 hasAuthorship W2290767830A5028844936 @default.
- W2290767830 hasAuthorship W2290767830A5050162458 @default.
- W2290767830 hasAuthorship W2290767830A5057698290 @default.
- W2290767830 hasAuthorship W2290767830A5073778970 @default.
- W2290767830 hasConcept C106131492 @default.
- W2290767830 hasConcept C121332964 @default.
- W2290767830 hasConcept C24890656 @default.
- W2290767830 hasConcept C31972630 @default.
- W2290767830 hasConcept C38349280 @default.
- W2290767830 hasConcept C41008148 @default.
- W2290767830 hasConcept C57879066 @default.
- W2290767830 hasConceptScore W2290767830C106131492 @default.
- W2290767830 hasConceptScore W2290767830C121332964 @default.
- W2290767830 hasConceptScore W2290767830C24890656 @default.
- W2290767830 hasConceptScore W2290767830C31972630 @default.
- W2290767830 hasConceptScore W2290767830C38349280 @default.
- W2290767830 hasConceptScore W2290767830C41008148 @default.
- W2290767830 hasConceptScore W2290767830C57879066 @default.
- W2290767830 hasLocation W22907678301 @default.
- W2290767830 hasLocation W22907678302 @default.
- W2290767830 hasOpenAccess W2290767830 @default.
- W2290767830 hasPrimaryLocation W22907678301 @default.
- W2290767830 hasRelatedWork W2009654964 @default.
- W2290767830 hasRelatedWork W2091353249 @default.
- W2290767830 hasRelatedWork W2113644136 @default.
- W2290767830 hasRelatedWork W2163313452 @default.
- W2290767830 hasRelatedWork W2347669609 @default.
- W2290767830 hasRelatedWork W2367330275 @default.
- W2290767830 hasRelatedWork W2391297909 @default.
- W2290767830 hasRelatedWork W2899084033 @default.
- W2290767830 hasRelatedWork W2945477662 @default.
- W2290767830 hasRelatedWork W4241425383 @default.
- W2290767830 isParatext "false" @default.
- W2290767830 isRetracted "false" @default.
- W2290767830 magId "2290767830" @default.
- W2290767830 workType "article" @default.