Matches in SemOpenAlex for { <https://semopenalex.org/work/W2291336311> ?p ?o ?g. }
- W2291336311 abstract "This thesis is about learning the globally optimal Bayesian network structure from fully observed dataset, by using score-based method. This structure learning problem is NP- hard, and has attracted the attention of many researchers. We first introduce the necessary background of the problem, then review various score-based methods and algorithms proposed in solving the problem. Parallelization has come under the spotlight during recent years, as it can utilize shared memory and computing power of multi-core supercomputers or computer clusters. We implemented a parallel algorithm Para-OS, which is based on dynamic programming. Experiments were performed in order to evaluate the algorithm. We also propose an improved version of Para-OS, which separates the scoring phase totally from the learning phase, performs score pruning by using Sparse Parent Graph, in addition largely reduces the communication between processors. Empirical results shows the new version saves memory comparing to Para-OS, and provides good runtime with multi-treading." @default.
- W2291336311 created "2016-06-24" @default.
- W2291336311 creator A5022155689 @default.
- W2291336311 date "2015-05-25" @default.
- W2291336311 modified "2023-09-23" @default.
- W2291336311 title "Implementation and Evaluation of a Parallel Algorithm for Structure Learning in Bayesian Networks" @default.
- W2291336311 cites W1015225754 @default.
- W2291336311 cites W1511986666 @default.
- W2291336311 cites W1530964327 @default.
- W2291336311 cites W1556153137 @default.
- W2291336311 cites W1560253955 @default.
- W2291336311 cites W1583923142 @default.
- W2291336311 cites W1594839797 @default.
- W2291336311 cites W175821084 @default.
- W2291336311 cites W1763728792 @default.
- W2291336311 cites W1789238264 @default.
- W2291336311 cites W1971989560 @default.
- W2291336311 cites W1986750708 @default.
- W2291336311 cites W1988814833 @default.
- W2291336311 cites W2008524883 @default.
- W2291336311 cites W2008906462 @default.
- W2291336311 cites W2009250187 @default.
- W2291336311 cites W2010288201 @default.
- W2291336311 cites W2055037429 @default.
- W2291336311 cites W2058815839 @default.
- W2291336311 cites W2080828514 @default.
- W2291336311 cites W2102022980 @default.
- W2291336311 cites W2118196167 @default.
- W2291336311 cites W2121146753 @default.
- W2291336311 cites W2130939059 @default.
- W2291336311 cites W2131148034 @default.
- W2291336311 cites W2135623468 @default.
- W2291336311 cites W2138186209 @default.
- W2291336311 cites W2142390772 @default.
- W2291336311 cites W2143451896 @default.
- W2291336311 cites W2150798249 @default.
- W2291336311 cites W2152623729 @default.
- W2291336311 cites W2152907584 @default.
- W2291336311 cites W2154111453 @default.
- W2291336311 cites W2157230942 @default.
- W2291336311 cites W2159080219 @default.
- W2291336311 cites W2165190832 @default.
- W2291336311 cites W2168175751 @default.
- W2291336311 cites W2169152096 @default.
- W2291336311 cites W2170112109 @default.
- W2291336311 cites W2182389258 @default.
- W2291336311 cites W2223868250 @default.
- W2291336311 cites W2249676289 @default.
- W2291336311 cites W2307253082 @default.
- W2291336311 cites W2397866408 @default.
- W2291336311 cites W2568887718 @default.
- W2291336311 cites W2611370172 @default.
- W2291336311 cites W2963139738 @default.
- W2291336311 cites W2991116385 @default.
- W2291336311 hasPublicationYear "2015" @default.
- W2291336311 type Work @default.
- W2291336311 sameAs 2291336311 @default.
- W2291336311 citedByCount "0" @default.
- W2291336311 crossrefType "journal-article" @default.
- W2291336311 hasAuthorship W2291336311A5022155689 @default.
- W2291336311 hasConcept C108010975 @default.
- W2291336311 hasConcept C11413529 @default.
- W2291336311 hasConcept C119857082 @default.
- W2291336311 hasConcept C120373497 @default.
- W2291336311 hasConcept C132525143 @default.
- W2291336311 hasConcept C154945302 @default.
- W2291336311 hasConcept C33724603 @default.
- W2291336311 hasConcept C41008148 @default.
- W2291336311 hasConcept C6557445 @default.
- W2291336311 hasConcept C80444323 @default.
- W2291336311 hasConcept C86803240 @default.
- W2291336311 hasConceptScore W2291336311C108010975 @default.
- W2291336311 hasConceptScore W2291336311C11413529 @default.
- W2291336311 hasConceptScore W2291336311C119857082 @default.
- W2291336311 hasConceptScore W2291336311C120373497 @default.
- W2291336311 hasConceptScore W2291336311C132525143 @default.
- W2291336311 hasConceptScore W2291336311C154945302 @default.
- W2291336311 hasConceptScore W2291336311C33724603 @default.
- W2291336311 hasConceptScore W2291336311C41008148 @default.
- W2291336311 hasConceptScore W2291336311C6557445 @default.
- W2291336311 hasConceptScore W2291336311C80444323 @default.
- W2291336311 hasConceptScore W2291336311C86803240 @default.
- W2291336311 hasLocation W22913363111 @default.
- W2291336311 hasOpenAccess W2291336311 @default.
- W2291336311 hasPrimaryLocation W22913363111 @default.
- W2291336311 hasRelatedWork W1481131999 @default.
- W2291336311 hasRelatedWork W1872430906 @default.
- W2291336311 hasRelatedWork W1934946603 @default.
- W2291336311 hasRelatedWork W2013928556 @default.
- W2291336311 hasRelatedWork W2037017016 @default.
- W2291336311 hasRelatedWork W2065902946 @default.
- W2291336311 hasRelatedWork W2244133772 @default.
- W2291336311 hasRelatedWork W230074880 @default.
- W2291336311 hasRelatedWork W2401719835 @default.
- W2291336311 hasRelatedWork W2517850251 @default.
- W2291336311 hasRelatedWork W2534159769 @default.
- W2291336311 hasRelatedWork W2547440996 @default.
- W2291336311 hasRelatedWork W2580088081 @default.
- W2291336311 hasRelatedWork W2917925239 @default.
- W2291336311 hasRelatedWork W3037432796 @default.