Matches in SemOpenAlex for { <https://semopenalex.org/work/W2291501036> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2291501036 endingPage "182" @default.
- W2291501036 startingPage "168" @default.
- W2291501036 abstract "Electronic Medical Record (EMR) has established itself as a valuable resource for large scale analysis of health data. A hospital EMR dataset typically consists of medical records of hospitalized patients. A medical record contains diagnostic information (diagnosis codes), procedures performed (procedure codes) and admission details. Traditional topic models, such as latent Dirichlet allocation (LDA) and hierarchical Dirichlet process (HDP), can be employed to discover disease topics from EMR data by treating patients as documents and diagnosis codes as words. This topic modeling helps to understand the constitution of patient diseases and offers a tool for better planning of treatment. In this paper, we propose a novel and flexible hierarchical Bayesian nonparametric model, the word distance dependent Chinese restaurant franchise (wddCRF), which incorporates word-to-word distances to discover semantically-coherent disease topics. We are motivated by the fact that diagnosis codes are connected in the form of ICD-10 tree structure which presents semantic relationships between codes. We exploit a decay function to incorporate distances between words at the bottom level of wddCRF. Efficient inference is derived for the wddCRF by using MCMC technique. Furthermore, since procedure codes are often correlated with diagnosis codes, we develop the correspondence wddCRF (Corr-wddCRF) to explore conditional relationships of procedure codes for a given disease pattern. Efficient collapsed Gibbs sampling is derived for the Corr-wddCRF. We evaluate the proposed models on two real-world medical datasets – PolyVascular disease and Acute Myocardial Infarction disease. We demonstrate that the Corr-wddCRF model discovers more coherent topics than the Corr-HDP. We also use disease topic proportions as new features and show that using features from the Corr-wddCRF outperforms the baselines on 14-days readmission prediction. Beside these, the prediction for procedure codes based on the Corr-wddCRF also shows considerable accuracy." @default.
- W2291501036 created "2016-06-24" @default.
- W2291501036 creator A5024215125 @default.
- W2291501036 creator A5036447132 @default.
- W2291501036 creator A5040788419 @default.
- W2291501036 creator A5045540854 @default.
- W2291501036 date "2016-05-01" @default.
- W2291501036 modified "2023-09-25" @default.
- W2291501036 title "Hierarchical Bayesian nonparametric models for knowledge discovery from electronic medical records" @default.
- W2291501036 cites W1965660055 @default.
- W2291501036 cites W1969879564 @default.
- W2291501036 cites W1972588194 @default.
- W2291501036 cites W2004749298 @default.
- W2291501036 cites W2004910511 @default.
- W2291501036 cites W2009026674 @default.
- W2291501036 cites W2031375387 @default.
- W2291501036 cites W2033012377 @default.
- W2291501036 cites W2049521532 @default.
- W2291501036 cites W2069429561 @default.
- W2291501036 cites W2080203041 @default.
- W2291501036 cites W2086019232 @default.
- W2291501036 cites W2086923543 @default.
- W2291501036 cites W2114039834 @default.
- W2291501036 cites W2116680794 @default.
- W2291501036 cites W2135620863 @default.
- W2291501036 cites W2142407957 @default.
- W2291501036 cites W2154703852 @default.
- W2291501036 cites W2158266063 @default.
- W2291501036 cites W2170131723 @default.
- W2291501036 cites W2963476756 @default.
- W2291501036 doi "https://doi.org/10.1016/j.knosys.2016.02.005" @default.
- W2291501036 hasPublicationYear "2016" @default.
- W2291501036 type Work @default.
- W2291501036 sameAs 2291501036 @default.
- W2291501036 citedByCount "19" @default.
- W2291501036 countsByYear W22915010362016 @default.
- W2291501036 countsByYear W22915010362017 @default.
- W2291501036 countsByYear W22915010362018 @default.
- W2291501036 countsByYear W22915010362019 @default.
- W2291501036 countsByYear W22915010362020 @default.
- W2291501036 countsByYear W22915010362021 @default.
- W2291501036 countsByYear W22915010362022 @default.
- W2291501036 countsByYear W22915010362023 @default.
- W2291501036 crossrefType "journal-article" @default.
- W2291501036 hasAuthorship W2291501036A5024215125 @default.
- W2291501036 hasAuthorship W2291501036A5036447132 @default.
- W2291501036 hasAuthorship W2291501036A5040788419 @default.
- W2291501036 hasAuthorship W2291501036A5045540854 @default.
- W2291501036 hasConcept C107673813 @default.
- W2291501036 hasConcept C119857082 @default.
- W2291501036 hasConcept C124101348 @default.
- W2291501036 hasConcept C141318989 @default.
- W2291501036 hasConcept C154945302 @default.
- W2291501036 hasConcept C158424031 @default.
- W2291501036 hasConcept C171686336 @default.
- W2291501036 hasConcept C204321447 @default.
- W2291501036 hasConcept C2776214188 @default.
- W2291501036 hasConcept C2908647359 @default.
- W2291501036 hasConcept C41008148 @default.
- W2291501036 hasConcept C45827449 @default.
- W2291501036 hasConcept C500882744 @default.
- W2291501036 hasConcept C71924100 @default.
- W2291501036 hasConcept C99454951 @default.
- W2291501036 hasConceptScore W2291501036C107673813 @default.
- W2291501036 hasConceptScore W2291501036C119857082 @default.
- W2291501036 hasConceptScore W2291501036C124101348 @default.
- W2291501036 hasConceptScore W2291501036C141318989 @default.
- W2291501036 hasConceptScore W2291501036C154945302 @default.
- W2291501036 hasConceptScore W2291501036C158424031 @default.
- W2291501036 hasConceptScore W2291501036C171686336 @default.
- W2291501036 hasConceptScore W2291501036C204321447 @default.
- W2291501036 hasConceptScore W2291501036C2776214188 @default.
- W2291501036 hasConceptScore W2291501036C2908647359 @default.
- W2291501036 hasConceptScore W2291501036C41008148 @default.
- W2291501036 hasConceptScore W2291501036C45827449 @default.
- W2291501036 hasConceptScore W2291501036C500882744 @default.
- W2291501036 hasConceptScore W2291501036C71924100 @default.
- W2291501036 hasConceptScore W2291501036C99454951 @default.
- W2291501036 hasLocation W22915010361 @default.
- W2291501036 hasOpenAccess W2291501036 @default.
- W2291501036 hasPrimaryLocation W22915010361 @default.
- W2291501036 hasRelatedWork W159230833 @default.
- W2291501036 hasRelatedWork W2148111240 @default.
- W2291501036 hasRelatedWork W2171278750 @default.
- W2291501036 hasRelatedWork W2279018116 @default.
- W2291501036 hasRelatedWork W2291501036 @default.
- W2291501036 hasRelatedWork W2388055569 @default.
- W2291501036 hasRelatedWork W2950322393 @default.
- W2291501036 hasRelatedWork W2950770596 @default.
- W2291501036 hasRelatedWork W3123277936 @default.
- W2291501036 hasRelatedWork W4294377911 @default.
- W2291501036 hasVolume "99" @default.
- W2291501036 isParatext "false" @default.
- W2291501036 isRetracted "false" @default.
- W2291501036 magId "2291501036" @default.
- W2291501036 workType "article" @default.