Matches in SemOpenAlex for { <https://semopenalex.org/work/W2291908932> ?p ?o ?g. }
- W2291908932 abstract "Emerging computation- and data-driven approaches are particularly useful for rationally designing materials with targeted properties. Generally, these approaches rely on identifying structure-property relationships by learning from a dataset of sufficiently large number of relevant materials. The learned information can then be used to predict the properties of materials not already in the dataset, thus accelerating the materials design. Herein, we develop a dataset of 1,073 polymers and related materials and make it available at http://khazana.uconn.edu/. This dataset is uniformly prepared using first-principles calculations with structures obtained either from other sources or by using structure search methods. Because the immediate target of this work is to assist the design of high dielectric constant polymers, it is initially designed to include the optimized structures, atomization energies, band gaps, and dielectric constants. It will be progressively expanded by accumulating new materials and including additional properties calculated for the optimized structures provided." @default.
- W2291908932 created "2016-06-24" @default.
- W2291908932 creator A5017719372 @default.
- W2291908932 creator A5031952600 @default.
- W2291908932 creator A5032715041 @default.
- W2291908932 creator A5071017472 @default.
- W2291908932 creator A5075051974 @default.
- W2291908932 date "2016-03-01" @default.
- W2291908932 modified "2023-10-13" @default.
- W2291908932 title "A polymer dataset for accelerated property prediction and design" @default.
- W2291908932 cites W1513260206 @default.
- W2291908932 cites W1550186202 @default.
- W2291908932 cites W1573207696 @default.
- W2291908932 cites W1929807747 @default.
- W2291908932 cites W1965192594 @default.
- W2291908932 cites W1970127494 @default.
- W2291908932 cites W1974030624 @default.
- W2291908932 cites W1976492731 @default.
- W2291908932 cites W1979464298 @default.
- W2291908932 cites W1986178337 @default.
- W2291908932 cites W1986203686 @default.
- W2291908932 cites W1988320534 @default.
- W2291908932 cites W1992156271 @default.
- W2291908932 cites W1992985800 @default.
- W2291908932 cites W1993849699 @default.
- W2291908932 cites W1994880295 @default.
- W2291908932 cites W1997772366 @default.
- W2291908932 cites W1997806793 @default.
- W2291908932 cites W1998260904 @default.
- W2291908932 cites W2003433819 @default.
- W2291908932 cites W2006319367 @default.
- W2291908932 cites W2007395042 @default.
- W2291908932 cites W2009943548 @default.
- W2291908932 cites W2011747471 @default.
- W2291908932 cites W2011857854 @default.
- W2291908932 cites W2013795311 @default.
- W2291908932 cites W2015197254 @default.
- W2291908932 cites W2016403501 @default.
- W2291908932 cites W2019537263 @default.
- W2291908932 cites W2023413597 @default.
- W2291908932 cites W2023455144 @default.
- W2291908932 cites W2024435414 @default.
- W2291908932 cites W2025139684 @default.
- W2291908932 cites W2030976617 @default.
- W2291908932 cites W2036113194 @default.
- W2291908932 cites W2043701535 @default.
- W2291908932 cites W2051217703 @default.
- W2291908932 cites W2055751887 @default.
- W2291908932 cites W2056235971 @default.
- W2291908932 cites W2058583892 @default.
- W2291908932 cites W2060433756 @default.
- W2291908932 cites W2060806160 @default.
- W2291908932 cites W2063846708 @default.
- W2291908932 cites W2065905435 @default.
- W2291908932 cites W2069407997 @default.
- W2291908932 cites W2073891657 @default.
- W2291908932 cites W2074616700 @default.
- W2291908932 cites W2076703516 @default.
- W2291908932 cites W2079105963 @default.
- W2291908932 cites W2080635178 @default.
- W2291908932 cites W2083222334 @default.
- W2291908932 cites W2084570899 @default.
- W2291908932 cites W2085093563 @default.
- W2291908932 cites W2086702546 @default.
- W2291908932 cites W2086920744 @default.
- W2291908932 cites W2088331368 @default.
- W2291908932 cites W2102940758 @default.
- W2291908932 cites W2104578772 @default.
- W2291908932 cites W2106084831 @default.
- W2291908932 cites W2115096312 @default.
- W2291908932 cites W2123306226 @default.
- W2291908932 cites W2124820885 @default.
- W2291908932 cites W2125034904 @default.
- W2291908932 cites W2133641393 @default.
- W2291908932 cites W2143434140 @default.
- W2291908932 cites W2144735217 @default.
- W2291908932 cites W2145395344 @default.
- W2291908932 cites W2167983878 @default.
- W2291908932 cites W2230728100 @default.
- W2291908932 cites W2313966941 @default.
- W2291908932 cites W2315793378 @default.
- W2291908932 cites W2324057876 @default.
- W2291908932 cites W2415372084 @default.
- W2291908932 cites W3098552753 @default.
- W2291908932 cites W4247731478 @default.
- W2291908932 cites W4249528159 @default.
- W2291908932 cites W759307962 @default.
- W2291908932 doi "https://doi.org/10.1038/sdata.2016.12" @default.
- W2291908932 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4772654" @default.
- W2291908932 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26927478" @default.
- W2291908932 hasPublicationYear "2016" @default.
- W2291908932 type Work @default.
- W2291908932 sameAs 2291908932 @default.
- W2291908932 citedByCount "132" @default.
- W2291908932 countsByYear W22919089322016 @default.
- W2291908932 countsByYear W22919089322017 @default.
- W2291908932 countsByYear W22919089322018 @default.
- W2291908932 countsByYear W22919089322019 @default.
- W2291908932 countsByYear W22919089322020 @default.
- W2291908932 countsByYear W22919089322021 @default.