Matches in SemOpenAlex for { <https://semopenalex.org/work/W2292012186> ?p ?o ?g. }
Showing items 1 to 56 of
56
with 100 items per page.
- W2292012186 endingPage "752" @default.
- W2292012186 startingPage "747" @default.
- W2292012186 abstract "The project was done in Nanyang technological university, Singapore at Electric power research Lab during the period from Sep 2006 to Nov 2007. The liberalization of electric market has generated the unbundling of large utilities into separated generation, Transmission and Distribution companies with subsequent changes in the operating condition at electric power systems. Most of the breakdowns in the electric power systems are caused by unfavorable dynamic response of the networks following system disturbances. In addition, environmental and economic consideratioNS are forcing power systems to be operated closer to their limits of stability .Therefore dynamic security assessment of power systems is becoming increasingly important. Voltage collapse is one of the instability which occurs when the system is heavily loaded. In addition, the mechanism of voltage collapse is due to the load reacting to the voltage changed which leads to further voltage changes. In this project, indicators utilizing the generator-load mismatch and active/reactive power margins for on-line assessment of proximity of voltage instability of power system is to be developed. The approach utilizes an artificial neural networks(ANN) function approximator. In the area of Power systems, problems may be expressed in different ways depending upon their nature. The problem formulation may be expressed in terms of complex systems, say nonlinear, large scale, dynamical, discrete, stochastic, ransom like quasi-periodical, time-variant parameter systems etc. Among these factors, the nonlinear and the large scale systems make power system problems more hard to solve. Apart from linear systems, no good analytical system are available for the complicated problems. ANN is a good promising candidate for dealing with them." @default.
- W2292012186 created "2016-06-24" @default.
- W2292012186 creator A5011939701 @default.
- W2292012186 creator A5015457117 @default.
- W2292012186 creator A5023745801 @default.
- W2292012186 creator A5056227979 @default.
- W2292012186 date "2010-01-01" @default.
- W2292012186 modified "2023-09-26" @default.
- W2292012186 title "Voltage Stability Assessment Using Neural Networks in The Deregulated Market Environment" @default.
- W2292012186 cites W1605989338 @default.
- W2292012186 cites W2015304446 @default.
- W2292012186 cites W2073281470 @default.
- W2292012186 cites W2103601587 @default.
- W2292012186 cites W2139211701 @default.
- W2292012186 cites W2176132314 @default.
- W2292012186 cites W3207342693 @default.
- W2292012186 doi "https://doi.org/10.7763/ijcee.2010.v2.222" @default.
- W2292012186 hasPublicationYear "2010" @default.
- W2292012186 type Work @default.
- W2292012186 sameAs 2292012186 @default.
- W2292012186 citedByCount "2" @default.
- W2292012186 countsByYear W22920121862014 @default.
- W2292012186 crossrefType "journal-article" @default.
- W2292012186 hasAuthorship W2292012186A5011939701 @default.
- W2292012186 hasAuthorship W2292012186A5015457117 @default.
- W2292012186 hasAuthorship W2292012186A5023745801 @default.
- W2292012186 hasAuthorship W2292012186A5056227979 @default.
- W2292012186 hasConcept C112972136 @default.
- W2292012186 hasConcept C119857082 @default.
- W2292012186 hasConcept C154945302 @default.
- W2292012186 hasConcept C41008148 @default.
- W2292012186 hasConcept C50644808 @default.
- W2292012186 hasConceptScore W2292012186C112972136 @default.
- W2292012186 hasConceptScore W2292012186C119857082 @default.
- W2292012186 hasConceptScore W2292012186C154945302 @default.
- W2292012186 hasConceptScore W2292012186C41008148 @default.
- W2292012186 hasConceptScore W2292012186C50644808 @default.
- W2292012186 hasLocation W22920121861 @default.
- W2292012186 hasOpenAccess W2292012186 @default.
- W2292012186 hasPrimaryLocation W22920121861 @default.
- W2292012186 hasRelatedWork W1989482460 @default.
- W2292012186 hasRelatedWork W2081174236 @default.
- W2292012186 hasRelatedWork W2375380208 @default.
- W2292012186 hasRelatedWork W2386387936 @default.
- W2292012186 hasRelatedWork W3001020386 @default.
- W2292012186 hasRelatedWork W3107474891 @default.
- W2292012186 hasRelatedWork W4251429894 @default.
- W2292012186 hasRelatedWork W4362499384 @default.
- W2292012186 hasRelatedWork W44280897 @default.
- W2292012186 hasRelatedWork W1629725936 @default.
- W2292012186 isParatext "false" @default.
- W2292012186 isRetracted "false" @default.
- W2292012186 magId "2292012186" @default.
- W2292012186 workType "article" @default.