Matches in SemOpenAlex for { <https://semopenalex.org/work/W2292452007> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2292452007 endingPage "55" @default.
- W2292452007 startingPage "55" @default.
- W2292452007 abstract "Collecting evidence is an evergreen problem of the sciences of criminal procedure law. The problem is originated on the one hand from the fact that in the criminal proceedings there is a lack of evidences in a typical case. It is to understand, when the practicing of law is seeking to use the few available evidences at the highest efficiency level. The other side of the problem is, that by interpreting evidence the practicing of law draws conclusions as part of the interpretation of evidences, and he defines the facts of the case based on these conclusions. When is to consider, that we have enough evidences, and what method shall we use to interpret this evidences? The most efficient method we use, it is more probable that we will define the correct facts of the case. But is there any method, which leads us, inerrable to the correct facts of the case, or with other words which helps us to draw the right conclusions from the given evidence? There is a discussion about a method in the foreign literature which inserts the evidences in a mathematical equation and it defines the value of the evidences upon that. Investigations require that detectives interpret what evidence tells them about the probability that a suspect committed a crime. In real life situation the forensic experts can not accurately assess what a specific element of information tells them about the likelihood of an outcome. Bayes’ Theorem, however, can be used to overcome this difficulty." @default.
- W2292452007 created "2016-06-24" @default.
- W2292452007 creator A5037399984 @default.
- W2292452007 creator A5046953950 @default.
- W2292452007 creator A5066255380 @default.
- W2292452007 date "2016-01-01" @default.
- W2292452007 modified "2023-09-27" @default.
- W2292452007 title "Using of Bayesian Information as Evidence in Modern Forensic Research: A Probabilistic Thought for a Forensic Expert" @default.
- W2292452007 doi "https://doi.org/10.5958/0973-9130.2016.00013.x" @default.
- W2292452007 hasPublicationYear "2016" @default.
- W2292452007 type Work @default.
- W2292452007 sameAs 2292452007 @default.
- W2292452007 citedByCount "0" @default.
- W2292452007 crossrefType "journal-article" @default.
- W2292452007 hasAuthorship W2292452007A5037399984 @default.
- W2292452007 hasAuthorship W2292452007A5046953950 @default.
- W2292452007 hasAuthorship W2292452007A5066255380 @default.
- W2292452007 hasConcept C107673813 @default.
- W2292452007 hasConcept C111472728 @default.
- W2292452007 hasConcept C119857082 @default.
- W2292452007 hasConcept C138885662 @default.
- W2292452007 hasConcept C144237770 @default.
- W2292452007 hasConcept C148220186 @default.
- W2292452007 hasConcept C154945302 @default.
- W2292452007 hasConcept C15744967 @default.
- W2292452007 hasConcept C171906077 @default.
- W2292452007 hasConcept C199360897 @default.
- W2292452007 hasConcept C207201462 @default.
- W2292452007 hasConcept C2776291640 @default.
- W2292452007 hasConcept C2778223634 @default.
- W2292452007 hasConcept C33724603 @default.
- W2292452007 hasConcept C33923547 @default.
- W2292452007 hasConcept C41008148 @default.
- W2292452007 hasConcept C49937458 @default.
- W2292452007 hasConcept C527412718 @default.
- W2292452007 hasConcept C73484699 @default.
- W2292452007 hasConceptScore W2292452007C107673813 @default.
- W2292452007 hasConceptScore W2292452007C111472728 @default.
- W2292452007 hasConceptScore W2292452007C119857082 @default.
- W2292452007 hasConceptScore W2292452007C138885662 @default.
- W2292452007 hasConceptScore W2292452007C144237770 @default.
- W2292452007 hasConceptScore W2292452007C148220186 @default.
- W2292452007 hasConceptScore W2292452007C154945302 @default.
- W2292452007 hasConceptScore W2292452007C15744967 @default.
- W2292452007 hasConceptScore W2292452007C171906077 @default.
- W2292452007 hasConceptScore W2292452007C199360897 @default.
- W2292452007 hasConceptScore W2292452007C207201462 @default.
- W2292452007 hasConceptScore W2292452007C2776291640 @default.
- W2292452007 hasConceptScore W2292452007C2778223634 @default.
- W2292452007 hasConceptScore W2292452007C33724603 @default.
- W2292452007 hasConceptScore W2292452007C33923547 @default.
- W2292452007 hasConceptScore W2292452007C41008148 @default.
- W2292452007 hasConceptScore W2292452007C49937458 @default.
- W2292452007 hasConceptScore W2292452007C527412718 @default.
- W2292452007 hasConceptScore W2292452007C73484699 @default.
- W2292452007 hasIssue "1" @default.
- W2292452007 hasLocation W22924520071 @default.
- W2292452007 hasOpenAccess W2292452007 @default.
- W2292452007 hasPrimaryLocation W22924520071 @default.
- W2292452007 hasRelatedWork W125895193 @default.
- W2292452007 hasRelatedWork W1542317869 @default.
- W2292452007 hasRelatedWork W1542671823 @default.
- W2292452007 hasRelatedWork W1575736640 @default.
- W2292452007 hasRelatedWork W2000664721 @default.
- W2292452007 hasRelatedWork W2083650362 @default.
- W2292452007 hasRelatedWork W2134091991 @default.
- W2292452007 hasRelatedWork W2203138718 @default.
- W2292452007 hasRelatedWork W2270022738 @default.
- W2292452007 hasRelatedWork W227208470 @default.
- W2292452007 hasRelatedWork W2285968535 @default.
- W2292452007 hasRelatedWork W2295562426 @default.
- W2292452007 hasRelatedWork W2302188503 @default.
- W2292452007 hasRelatedWork W2374852351 @default.
- W2292452007 hasRelatedWork W2403913628 @default.
- W2292452007 hasRelatedWork W2474025767 @default.
- W2292452007 hasRelatedWork W2548105430 @default.
- W2292452007 hasRelatedWork W2557180534 @default.
- W2292452007 hasRelatedWork W2581640896 @default.
- W2292452007 hasRelatedWork W407344969 @default.
- W2292452007 hasVolume "10" @default.
- W2292452007 isParatext "false" @default.
- W2292452007 isRetracted "false" @default.
- W2292452007 magId "2292452007" @default.
- W2292452007 workType "article" @default.