Matches in SemOpenAlex for { <https://semopenalex.org/work/W2292809968> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2292809968 abstract "In applied problems, extreme values of continuous real functions specified on a segment should often be found. In considering such problems, we can restrict ourselves to the unit segment [ , ] 0 1 as a domain. From the viewpoint of programmers, some convenient mathematical refinement of the concept of a continuous real function should be taken as a basis in order that algorithms (programs) of processing forms of representation of functions can be constructed for solvable problems. Here, forms of representation of continuous real functions are infinite labeled trees [1–3]. We will consider problems 1a, 1b, and 1c as programming problems. Problem 1. Based on a continuous real function f x ( ) defined on the segment [ , ] 0 1 (in the form of its computation tree), find the following numbers: (a) a number x 0 , where 0 1 0 1 0 0 ≤ ≤ = ≤ ≤ x f x f x x and ( ) ( ) | sup{ }; (b) a pair of numbers ( , ) x y 0 0 , where 0 1 0 ≤ ≤ x and y f x f x x 0 0 0 1 = = ≤ ≤ ( ) ( ) | sup{ }; (c) a number y0 equal to sup{ } f x x ( ) |0 1 ≤ ≤ . The problems formulated above should be refined from the viewpoint of programmers. In all cases, the determination of algorithmic approximating procedures (or a proof of the absence of such procedures) is meant. For problems 1a and 1b, such procedures are absent (i.e., they are not realizable), whereas problem 1c has a favorable solution (it is realizable) and the corresponding approximating program P1 is constructed below. The principle of its operation is described and some programming language is developed, which is convenient for writing approximating programs that represent functionals in the space of continuous real functions defined on the unit segment. The realizability (algorithmic realizability) is understood to be the possibility of construction of the corresponding macrotransducer (algorithmic macrotransducer) [3, 4]. Problems 2 and 3 that are considered at the end of this article are connected with problem 1c. The unrealizability of problem 1b follows from the unrealizability of problem 1a. In this article, the proof of this statement is given in the following more strict form: problem 1a is unrealizable in the class of continuous real functions f :[ , ] [ , ] 0 1 0 1 → specified by finite strict R-transducers. Note that the concept of an R-transducer was introduced in [1]. An R-transducer is called strict if the output symbols 2 or 2 are not used in it. We should develop tools of designing programs of processing of labeled trees. By labeled trees we mean computation trees for continuous real functions from the space C[ , ] 0 1 . Here, we are dealing with programming of computable functionals F C : [ , ] 0 1 → R defined on the space C[ , ] 0 1 or on its subspaces. We use some definitions and notations from [3], where the space P[ , ] 0 1 of real functions is actually found that are defined on the segment [ , ] 0 1 and are specified by R-transducers. This space is wider than C[ , ] 0 1 (it is the so-called G δ-set in the space P[ , ] 0 1 ). Therefore, it is possible and even convenient to specify functionals on the space P[ , ] 0 1 rather than onC[ , ] 0 1 . The concepts of a computation tree and a macrotransducer over computation trees are first described in [2] and then in [3]." @default.
- W2292809968 created "2016-06-24" @default.
- W2292809968 creator A5032339110 @default.
- W2292809968 date "2003-01-01" @default.
- W2292809968 modified "2023-09-26" @default.
- W2292809968 title "SOME EXTREMUM PROBLEMS FOR CONTINUOUS" @default.
- W2292809968 cites W1578181250 @default.
- W2292809968 cites W1581824324 @default.
- W2292809968 cites W1968263745 @default.
- W2292809968 cites W2028261340 @default.
- W2292809968 hasPublicationYear "2003" @default.
- W2292809968 type Work @default.
- W2292809968 sameAs 2292809968 @default.
- W2292809968 citedByCount "0" @default.
- W2292809968 crossrefType "journal-article" @default.
- W2292809968 hasAuthorship W2292809968A5032339110 @default.
- W2292809968 hasConcept C10138342 @default.
- W2292809968 hasConcept C113174947 @default.
- W2292809968 hasConcept C11413529 @default.
- W2292809968 hasConcept C114614502 @default.
- W2292809968 hasConcept C118615104 @default.
- W2292809968 hasConcept C12426560 @default.
- W2292809968 hasConcept C130231550 @default.
- W2292809968 hasConcept C134306372 @default.
- W2292809968 hasConcept C14036430 @default.
- W2292809968 hasConcept C162324750 @default.
- W2292809968 hasConcept C17744445 @default.
- W2292809968 hasConcept C182306322 @default.
- W2292809968 hasConcept C199539241 @default.
- W2292809968 hasConcept C2524010 @default.
- W2292809968 hasConcept C2776359362 @default.
- W2292809968 hasConcept C2778199601 @default.
- W2292809968 hasConcept C33923547 @default.
- W2292809968 hasConcept C36503486 @default.
- W2292809968 hasConcept C45374587 @default.
- W2292809968 hasConcept C78458016 @default.
- W2292809968 hasConcept C86803240 @default.
- W2292809968 hasConcept C94020503 @default.
- W2292809968 hasConcept C94625758 @default.
- W2292809968 hasConceptScore W2292809968C10138342 @default.
- W2292809968 hasConceptScore W2292809968C113174947 @default.
- W2292809968 hasConceptScore W2292809968C11413529 @default.
- W2292809968 hasConceptScore W2292809968C114614502 @default.
- W2292809968 hasConceptScore W2292809968C118615104 @default.
- W2292809968 hasConceptScore W2292809968C12426560 @default.
- W2292809968 hasConceptScore W2292809968C130231550 @default.
- W2292809968 hasConceptScore W2292809968C134306372 @default.
- W2292809968 hasConceptScore W2292809968C14036430 @default.
- W2292809968 hasConceptScore W2292809968C162324750 @default.
- W2292809968 hasConceptScore W2292809968C17744445 @default.
- W2292809968 hasConceptScore W2292809968C182306322 @default.
- W2292809968 hasConceptScore W2292809968C199539241 @default.
- W2292809968 hasConceptScore W2292809968C2524010 @default.
- W2292809968 hasConceptScore W2292809968C2776359362 @default.
- W2292809968 hasConceptScore W2292809968C2778199601 @default.
- W2292809968 hasConceptScore W2292809968C33923547 @default.
- W2292809968 hasConceptScore W2292809968C36503486 @default.
- W2292809968 hasConceptScore W2292809968C45374587 @default.
- W2292809968 hasConceptScore W2292809968C78458016 @default.
- W2292809968 hasConceptScore W2292809968C86803240 @default.
- W2292809968 hasConceptScore W2292809968C94020503 @default.
- W2292809968 hasConceptScore W2292809968C94625758 @default.
- W2292809968 hasLocation W22928099681 @default.
- W2292809968 hasOpenAccess W2292809968 @default.
- W2292809968 hasPrimaryLocation W22928099681 @default.
- W2292809968 hasRelatedWork W1492288613 @default.
- W2292809968 hasRelatedWork W1557019411 @default.
- W2292809968 hasRelatedWork W1975154469 @default.
- W2292809968 hasRelatedWork W2056825649 @default.
- W2292809968 hasRelatedWork W2056827464 @default.
- W2292809968 hasRelatedWork W2075204971 @default.
- W2292809968 hasRelatedWork W2077323669 @default.
- W2292809968 hasRelatedWork W2081017048 @default.
- W2292809968 hasRelatedWork W2113350754 @default.
- W2292809968 hasRelatedWork W2158824357 @default.
- W2292809968 hasRelatedWork W2159020094 @default.
- W2292809968 hasRelatedWork W2201291099 @default.
- W2292809968 hasRelatedWork W2463852903 @default.
- W2292809968 hasRelatedWork W276335716 @default.
- W2292809968 hasRelatedWork W2781640117 @default.
- W2292809968 hasRelatedWork W2903280113 @default.
- W2292809968 hasRelatedWork W2912403374 @default.
- W2292809968 hasRelatedWork W2963192233 @default.
- W2292809968 hasRelatedWork W3122721158 @default.
- W2292809968 hasRelatedWork W2301208049 @default.
- W2292809968 isParatext "false" @default.
- W2292809968 isRetracted "false" @default.
- W2292809968 magId "2292809968" @default.
- W2292809968 workType "article" @default.