Matches in SemOpenAlex for { <https://semopenalex.org/work/W2293157089> ?p ?o ?g. }
- W2293157089 endingPage "1841" @default.
- W2293157089 startingPage "1827" @default.
- W2293157089 abstract "Abstract Tree mortality is a key process shaping forest dynamics. Thus, there is a growing need for indicators of the likelihood of tree death. During the last decades, an increasing number of tree‐ring based studies have aimed to derive growth–mortality functions, mostly using logistic models. The results of these studies, however, are difficult to compare and synthesize due to the diversity of approaches used for the sampling strategy (number and characteristics of alive and death observations), the type of explanatory growth variables included (level, trend, etc.), and the length of the time window (number of years preceding the alive/death observation) that maximized the discrimination ability of each growth variable. We assess the implications of key methodological decisions when developing tree‐ring based growth–mortality relationships using logistic mixed‐effects regression models. As examples, we use published tree‐ring datasets from Abies alba (13 different sites), Nothofagus dombeyi (one site), and Quercus petraea (one site). Our approach is based on a constant sampling size and aims at (1) assessing the dependency of growth–mortality relationships on the statistical sampling scheme used, (2) determining the type of explanatory growth variables that should be considered, and (3) identifying the best length of the time window used to calculate them. The performance of tree‐ring‐based mortality models was reasonably high for all three species (area under the receiving operator characteristics curve, AUC > 0.7). Growth level variables were the most important predictors of mortality probability for two species ( A. alba , N. dombeyi ), while growth‐trend variables need to be considered for Q. petraea . In addition, the length of the time window used to calculate each growth variable was highly uncertain and depended on the sampling scheme, as some growth–mortality relationships varied with tree age. The present study accounts for the main sampling‐related biases to determine reliable species‐specific growth–mortality relationships. Our results highlight the importance of using a sampling strategy that is consistent with the research question. Moving towards a common methodology for developing reliable growth–mortality relationships is an important step towards improving our understanding of tree mortality across species and its representation in dynamic vegetation models." @default.
- W2293157089 created "2016-06-24" @default.
- W2293157089 creator A5012432685 @default.
- W2293157089 creator A5033119496 @default.
- W2293157089 creator A5034887009 @default.
- W2293157089 creator A5037578251 @default.
- W2293157089 creator A5046924444 @default.
- W2293157089 creator A5047856596 @default.
- W2293157089 creator A5053563490 @default.
- W2293157089 creator A5054735012 @default.
- W2293157089 creator A5056098891 @default.
- W2293157089 creator A5063465103 @default.
- W2293157089 creator A5075781013 @default.
- W2293157089 creator A5084179613 @default.
- W2293157089 creator A5089438729 @default.
- W2293157089 date "2016-09-01" @default.
- W2293157089 modified "2023-10-10" @default.
- W2293157089 title "Towards a common methodology for developing logistic tree mortality models based on ring‐width data" @default.
- W2293157089 cites W1595159159 @default.
- W2293157089 cites W1900254189 @default.
- W2293157089 cites W1951564719 @default.
- W2293157089 cites W1966512215 @default.
- W2293157089 cites W1968086345 @default.
- W2293157089 cites W1968712941 @default.
- W2293157089 cites W1973752964 @default.
- W2293157089 cites W1976367031 @default.
- W2293157089 cites W1985096753 @default.
- W2293157089 cites W1987543629 @default.
- W2293157089 cites W1998638849 @default.
- W2293157089 cites W2006767615 @default.
- W2293157089 cites W2010202663 @default.
- W2293157089 cites W2011190367 @default.
- W2293157089 cites W2037498826 @default.
- W2293157089 cites W2052109903 @default.
- W2293157089 cites W2052486546 @default.
- W2293157089 cites W2059177029 @default.
- W2293157089 cites W2060940682 @default.
- W2293157089 cites W2061903231 @default.
- W2293157089 cites W2062006538 @default.
- W2293157089 cites W2067281893 @default.
- W2293157089 cites W2071379517 @default.
- W2293157089 cites W2072307508 @default.
- W2293157089 cites W2072676583 @default.
- W2293157089 cites W2073454226 @default.
- W2293157089 cites W2074074333 @default.
- W2293157089 cites W2075647890 @default.
- W2293157089 cites W2078710512 @default.
- W2293157089 cites W2087674656 @default.
- W2293157089 cites W2099929014 @default.
- W2293157089 cites W2100532524 @default.
- W2293157089 cites W2100749039 @default.
- W2293157089 cites W2104608037 @default.
- W2293157089 cites W2105424374 @default.
- W2293157089 cites W2112543007 @default.
- W2293157089 cites W2115268776 @default.
- W2293157089 cites W2115476971 @default.
- W2293157089 cites W2122477416 @default.
- W2293157089 cites W2134572255 @default.
- W2293157089 cites W2134975353 @default.
- W2293157089 cites W2137058134 @default.
- W2293157089 cites W2137492415 @default.
- W2293157089 cites W2140131090 @default.
- W2293157089 cites W2140982044 @default.
- W2293157089 cites W2144605903 @default.
- W2293157089 cites W2144673831 @default.
- W2293157089 cites W2146272590 @default.
- W2293157089 cites W2151162783 @default.
- W2293157089 cites W2153268540 @default.
- W2293157089 cites W2155778040 @default.
- W2293157089 cites W2156526483 @default.
- W2293157089 cites W2160551249 @default.
- W2293157089 cites W2160554764 @default.
- W2293157089 cites W2163432472 @default.
- W2293157089 cites W2165038823 @default.
- W2293157089 cites W2170077258 @default.
- W2293157089 cites W2172132707 @default.
- W2293157089 cites W2178446203 @default.
- W2293157089 cites W2311150240 @default.
- W2293157089 cites W4238528855 @default.
- W2293157089 doi "https://doi.org/10.1890/15-1402.1" @default.
- W2293157089 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27755692" @default.
- W2293157089 hasPublicationYear "2016" @default.
- W2293157089 type Work @default.
- W2293157089 sameAs 2293157089 @default.
- W2293157089 citedByCount "32" @default.
- W2293157089 countsByYear W22931570892016 @default.
- W2293157089 countsByYear W22931570892017 @default.
- W2293157089 countsByYear W22931570892018 @default.
- W2293157089 countsByYear W22931570892019 @default.
- W2293157089 countsByYear W22931570892020 @default.
- W2293157089 countsByYear W22931570892021 @default.
- W2293157089 countsByYear W22931570892022 @default.
- W2293157089 countsByYear W22931570892023 @default.
- W2293157089 crossrefType "journal-article" @default.
- W2293157089 hasAuthorship W2293157089A5012432685 @default.
- W2293157089 hasAuthorship W2293157089A5033119496 @default.
- W2293157089 hasAuthorship W2293157089A5034887009 @default.
- W2293157089 hasAuthorship W2293157089A5037578251 @default.