Matches in SemOpenAlex for { <https://semopenalex.org/work/W2293309472> ?p ?o ?g. }
- W2293309472 abstract "In this research, a novel intelligent framework is proposed to identify the exhaust gas temperature and the engine-out hydrocarbon emission during the coldstart operation of an automotive engine. These are two key variables affecting the cumulative tailpipe emissions over the coldstart phase, which is the number one emission-related problem for today's spark-ignited engine vehicles. The coldstart operation is regarded as a highly nonlinear, transient and uncertain phenomenon. The proposed identifier integrates different soft computational strategies, i.e. neuro-fuzzy computing, fuzzy controller, swarm intelligent computing, and ensemble network design, beneficial for capturing both uncertainty and nonlinearity of the problem at hand. Furthermore, concepts of negative correlation topology design and hierarchical pair competition based parallel training are extracted from literature to form a diverse and robust ensemble identifier. Training of each neuro-fuzzy sub-component in ensemble network is carried out using a hybrid learning scheme. It is observed that the resulted ensemble identifier is capable to conduct the identification with acceptable rate of generalization, robustness and accuracy. Investigating the applicability of soft computational techniques for identifying the coldstart effect in SI engines.Proposing a novel bi-level learning technique to design the structure of neuro-fuzzy identifier.Extending the applications of negative correlation based ensemble identifiers to a really important engineering problem. In this paper, the authors propose a novel intelligent framework to identify the exhaust gas temperature (Texh) and the engine-out hydrocarbon emission (HCraw) during the coldstart operation of an automotive engine. These are two key variables affecting the cumulative tailpipe emissions (HCcum) over the coldstart phase, which is the number one emission-related problem for today's spark-ignited (SI) engine vehicles. The coldstart operation is regarded as a highly nonlinear, transient and uncertain phenomenon. The proposed identifier integrates different soft computational strategies, i.e. neuro-fuzzy computing, fuzzy controller, swarm intelligent computing, and ensemble network design, beneficial for capturing both uncertainty and nonlinearity of the problem at hand. Furthermore, concepts of negative correlation topology design and hierarchical pair competition based parallel training are extracted from literature to form a diverse and robust ensemble identifier. Training of each neuro-fuzzy sub-component in ensemble network is carried out using a hybrid learning scheme. One feature of the antecedent part of neuro-fuzzy system, i.e. number of linguistic terms for each variable, as well as characteristics of rules in rule base are adjusted using hierarchical fair competition-based parallel adaptive particle swarm optimization (HFC-APSO) and the rest of features, i.e. the shape of (membership functions) MFs and the consequent variables of each rule, are tuned using back-propagation (BP) and steepest descent techniques. As it was mentioned, the authors try to design an ensemble identifier with acceptable rate of generalization, robustness and accuracy. These features help them to tame the intuitive uncertainties associated with the rate of Texh and HCraw emission over the coldstart period. To do so, the potential characteristics of sub-components (solution domain of network design) are divided into a set of partitions and then HFC-APSO is utilized to explore/exploit each of those partitions. The exploration/exploitation rate of PSO (the core of HFC-APSO) is dynamically controlled by a fuzzy logic based controller. Hence, it is expected that HFC-APSO yields a set of accurate sub-identifiers with different operating characteristics. To further foster the diversity of the ensemble, negative correlation criterion is considered which obstructs the integration of identical sub-identifiers. The identification results demonstrate that the method is highly capable of providing an authentic model for estimation of Texh and HCraw emission during the coldstart period." @default.
- W2293309472 created "2016-06-24" @default.
- W2293309472 creator A5023913010 @default.
- W2293309472 creator A5033006881 @default.
- W2293309472 date "2015-07-01" @default.
- W2293309472 modified "2023-09-27" @default.
- W2293309472 title "An ensemble neuro-fuzzy radial basis network with self-adaptive swarm based supervisor and negative correlation for modeling automotive engine coldstart hydrocarbon emissions: A soft solution to a crucial automotive problem" @default.
- W2293309472 cites W1482804436 @default.
- W2293309472 cites W1489207167 @default.
- W2293309472 cites W1572646575 @default.
- W2293309472 cites W1593780319 @default.
- W2293309472 cites W1890564269 @default.
- W2293309472 cites W1897151127 @default.
- W2293309472 cites W1982645111 @default.
- W2293309472 cites W1991640459 @default.
- W2293309472 cites W2007567623 @default.
- W2293309472 cites W2017718868 @default.
- W2293309472 cites W2020454084 @default.
- W2293309472 cites W2022768635 @default.
- W2293309472 cites W2024034573 @default.
- W2293309472 cites W2025238608 @default.
- W2293309472 cites W2043876703 @default.
- W2293309472 cites W2044500908 @default.
- W2293309472 cites W2048525449 @default.
- W2293309472 cites W2051756810 @default.
- W2293309472 cites W2054881170 @default.
- W2293309472 cites W2055121425 @default.
- W2293309472 cites W2055346931 @default.
- W2293309472 cites W2058271794 @default.
- W2293309472 cites W2060198498 @default.
- W2293309472 cites W2067148141 @default.
- W2293309472 cites W2069881222 @default.
- W2293309472 cites W2075581204 @default.
- W2293309472 cites W2075614095 @default.
- W2293309472 cites W2079561848 @default.
- W2293309472 cites W2080278322 @default.
- W2293309472 cites W2080968049 @default.
- W2293309472 cites W2081413174 @default.
- W2293309472 cites W2086424216 @default.
- W2293309472 cites W2089077500 @default.
- W2293309472 cites W2095075560 @default.
- W2293309472 cites W2106625051 @default.
- W2293309472 cites W2117277615 @default.
- W2293309472 cites W2121698472 @default.
- W2293309472 cites W2122417208 @default.
- W2293309472 cites W2128156031 @default.
- W2293309472 cites W2144012133 @default.
- W2293309472 cites W2145833756 @default.
- W2293309472 cites W2147234763 @default.
- W2293309472 cites W2150355110 @default.
- W2293309472 cites W2158553142 @default.
- W2293309472 cites W2172145831 @default.
- W2293309472 cites W2188115033 @default.
- W2293309472 cites W2199393909 @default.
- W2293309472 cites W2541867383 @default.
- W2293309472 cites W1592220885 @default.
- W2293309472 cites W2025642241 @default.
- W2293309472 cites W2242685088 @default.
- W2293309472 cites W2262640497 @default.
- W2293309472 doi "https://doi.org/10.1016/j.asoc.2015.04.009" @default.
- W2293309472 hasPublicationYear "2015" @default.
- W2293309472 type Work @default.
- W2293309472 sameAs 2293309472 @default.
- W2293309472 citedByCount "12" @default.
- W2293309472 countsByYear W22933094722015 @default.
- W2293309472 countsByYear W22933094722017 @default.
- W2293309472 countsByYear W22933094722018 @default.
- W2293309472 countsByYear W22933094722020 @default.
- W2293309472 countsByYear W22933094722022 @default.
- W2293309472 countsByYear W22933094722023 @default.
- W2293309472 crossrefType "journal-article" @default.
- W2293309472 hasAuthorship W2293309472A5023913010 @default.
- W2293309472 hasAuthorship W2293309472A5033006881 @default.
- W2293309472 hasConcept C104317684 @default.
- W2293309472 hasConcept C119857082 @default.
- W2293309472 hasConcept C140073362 @default.
- W2293309472 hasConcept C154504017 @default.
- W2293309472 hasConcept C154945302 @default.
- W2293309472 hasConcept C185592680 @default.
- W2293309472 hasConcept C199360897 @default.
- W2293309472 hasConcept C41008148 @default.
- W2293309472 hasConcept C55493867 @default.
- W2293309472 hasConcept C58166 @default.
- W2293309472 hasConcept C63479239 @default.
- W2293309472 hasConceptScore W2293309472C104317684 @default.
- W2293309472 hasConceptScore W2293309472C119857082 @default.
- W2293309472 hasConceptScore W2293309472C140073362 @default.
- W2293309472 hasConceptScore W2293309472C154504017 @default.
- W2293309472 hasConceptScore W2293309472C154945302 @default.
- W2293309472 hasConceptScore W2293309472C185592680 @default.
- W2293309472 hasConceptScore W2293309472C199360897 @default.
- W2293309472 hasConceptScore W2293309472C41008148 @default.
- W2293309472 hasConceptScore W2293309472C55493867 @default.
- W2293309472 hasConceptScore W2293309472C58166 @default.
- W2293309472 hasConceptScore W2293309472C63479239 @default.
- W2293309472 hasLocation W22933094721 @default.
- W2293309472 hasOpenAccess W2293309472 @default.
- W2293309472 hasPrimaryLocation W22933094721 @default.
- W2293309472 hasRelatedWork W1650874008 @default.
- W2293309472 hasRelatedWork W198087410 @default.