Matches in SemOpenAlex for { <https://semopenalex.org/work/W2293445093> ?p ?o ?g. }
- W2293445093 endingPage "27" @default.
- W2293445093 startingPage "14" @default.
- W2293445093 abstract "This second part of the two-part study is devoted to the numerical Limit Analysis of a hollow sphere model with a Mohr–Coulomb matrix and its use for the assessment of theoretical results. Brief background and fundamental of the static and kinematic approaches in the context of numerical limit analysis are first recalled. We then present the hollow sphere model, together with its axisymmetric FEM discretization and its mechanical position. A conic programming adaptation of a previous iterative static approach, based on a piecewise linearization (PWL) of the plasticity criterion, was first realized. Unfortunately, the resulting code, no more than the PWL one, did not allow sufficiently refined meshes for loss of convergence of the conic optimizer. This problem was solved by using the projection algorithm of Ben Tal and Nemriovski (BTN) and the (interior point) linear programming code XA. For the kinematic approach, a first conic adaptation appeared also inefficient. Then, an original mixed (but fully kinematic) approach dedicated to the general Mohr–Coulomb axisymmetric problem was elaborated. The final conic mixed code appears much more robust than the classic one when using the conic code MOSEK, allowing us to take into account refined numerical meshes. After a fine validation in the case of spherical cavities and isotropic loadings (for which the exact solution is known) and comparison to previous (partial) results, numerical lower and upper bounds (a posteriori verified) of the macroscopic strength are provided. These bounds are used to assess and validate the theoretical results of the companion (part I) paper. Effects of the friction angle as well as that of the porosity are illustrated." @default.
- W2293445093 created "2016-06-24" @default.
- W2293445093 creator A5012716085 @default.
- W2293445093 creator A5014806448 @default.
- W2293445093 creator A5071865873 @default.
- W2293445093 creator A5052420832 @default.
- W2293445093 date "2016-06-01" @default.
- W2293445093 modified "2023-09-28" @default.
- W2293445093 title "Limit analysis and homogenization of porous materials with Mohr–Coulomb matrix. Part II: Numerical bounds and assessment of the theoretical model" @default.
- W2293445093 cites W1566831357 @default.
- W2293445093 cites W1568307856 @default.
- W2293445093 cites W1978963246 @default.
- W2293445093 cites W1978985116 @default.
- W2293445093 cites W1989311958 @default.
- W2293445093 cites W1991222827 @default.
- W2293445093 cites W2014880796 @default.
- W2293445093 cites W2015391632 @default.
- W2293445093 cites W2016303309 @default.
- W2293445093 cites W2036239283 @default.
- W2293445093 cites W2039391278 @default.
- W2293445093 cites W2047292243 @default.
- W2293445093 cites W2050331410 @default.
- W2293445093 cites W2052305635 @default.
- W2293445093 cites W2053545755 @default.
- W2293445093 cites W2056010626 @default.
- W2293445093 cites W2061743391 @default.
- W2293445093 cites W2071506800 @default.
- W2293445093 cites W2074587293 @default.
- W2293445093 cites W2077613114 @default.
- W2293445093 cites W2079908594 @default.
- W2293445093 cites W2088283763 @default.
- W2293445093 cites W2093211845 @default.
- W2293445093 cites W2157258353 @default.
- W2293445093 doi "https://doi.org/10.1016/j.jmps.2016.01.017" @default.
- W2293445093 hasPublicationYear "2016" @default.
- W2293445093 type Work @default.
- W2293445093 sameAs 2293445093 @default.
- W2293445093 citedByCount "6" @default.
- W2293445093 countsByYear W22934450932017 @default.
- W2293445093 countsByYear W22934450932018 @default.
- W2293445093 countsByYear W22934450932019 @default.
- W2293445093 countsByYear W22934450932021 @default.
- W2293445093 crossrefType "journal-article" @default.
- W2293445093 hasAuthorship W2293445093A5012716085 @default.
- W2293445093 hasAuthorship W2293445093A5014806448 @default.
- W2293445093 hasAuthorship W2293445093A5052420832 @default.
- W2293445093 hasAuthorship W2293445093A5071865873 @default.
- W2293445093 hasConcept C108598597 @default.
- W2293445093 hasConcept C11210021 @default.
- W2293445093 hasConcept C121332964 @default.
- W2293445093 hasConcept C126255220 @default.
- W2293445093 hasConcept C130217890 @default.
- W2293445093 hasConcept C134306372 @default.
- W2293445093 hasConcept C135628077 @default.
- W2293445093 hasConcept C136257953 @default.
- W2293445093 hasConcept C155253501 @default.
- W2293445093 hasConcept C158622935 @default.
- W2293445093 hasConcept C18903297 @default.
- W2293445093 hasConcept C2524010 @default.
- W2293445093 hasConcept C2778722038 @default.
- W2293445093 hasConcept C2779100365 @default.
- W2293445093 hasConcept C28826006 @default.
- W2293445093 hasConcept C33923547 @default.
- W2293445093 hasConcept C62520636 @default.
- W2293445093 hasConcept C77553402 @default.
- W2293445093 hasConcept C86803240 @default.
- W2293445093 hasConcept C97355855 @default.
- W2293445093 hasConceptScore W2293445093C108598597 @default.
- W2293445093 hasConceptScore W2293445093C11210021 @default.
- W2293445093 hasConceptScore W2293445093C121332964 @default.
- W2293445093 hasConceptScore W2293445093C126255220 @default.
- W2293445093 hasConceptScore W2293445093C130217890 @default.
- W2293445093 hasConceptScore W2293445093C134306372 @default.
- W2293445093 hasConceptScore W2293445093C135628077 @default.
- W2293445093 hasConceptScore W2293445093C136257953 @default.
- W2293445093 hasConceptScore W2293445093C155253501 @default.
- W2293445093 hasConceptScore W2293445093C158622935 @default.
- W2293445093 hasConceptScore W2293445093C18903297 @default.
- W2293445093 hasConceptScore W2293445093C2524010 @default.
- W2293445093 hasConceptScore W2293445093C2778722038 @default.
- W2293445093 hasConceptScore W2293445093C2779100365 @default.
- W2293445093 hasConceptScore W2293445093C28826006 @default.
- W2293445093 hasConceptScore W2293445093C33923547 @default.
- W2293445093 hasConceptScore W2293445093C62520636 @default.
- W2293445093 hasConceptScore W2293445093C77553402 @default.
- W2293445093 hasConceptScore W2293445093C86803240 @default.
- W2293445093 hasConceptScore W2293445093C97355855 @default.
- W2293445093 hasLocation W22934450931 @default.
- W2293445093 hasLocation W22934450932 @default.
- W2293445093 hasLocation W22934450933 @default.
- W2293445093 hasOpenAccess W2293445093 @default.
- W2293445093 hasPrimaryLocation W22934450931 @default.
- W2293445093 hasRelatedWork W2098177517 @default.
- W2293445093 hasRelatedWork W2114416272 @default.
- W2293445093 hasRelatedWork W2293445093 @default.
- W2293445093 hasRelatedWork W2783587654 @default.
- W2293445093 hasRelatedWork W2953666675 @default.
- W2293445093 hasRelatedWork W3003958345 @default.