Matches in SemOpenAlex for { <https://semopenalex.org/work/W2293622641> ?p ?o ?g. }
- W2293622641 endingPage "240" @default.
- W2293622641 startingPage "231" @default.
- W2293622641 abstract "Cardiovascular diseases remain the largest cause of death worldwide, and half of these deaths are the result of failure of the vascular system. Tissue engineering promises to provide new, and potentially more effective therapeutic strategies to replace damaged or degenerated vessels with functional vessels. However, these engineered vessels have substantial performance criteria, including vessel-like tubular shape, structure and mechanical property slate. Further, whether implanted without or with prior in vitro culture, such tubular scaffolds must provide a suitable environment for cell adhesion and growth and be of sufficient porosity to permit cell colonization. This study investigates the fabrication of slowly degradable, composite tubular polymer scaffolds made from polycaprolactone (PCL) and acrylated l-lactide-co-trimethylene carbonate (aPLA-co-TMC). The addition of acrylate groups permits the ‘in-process’ formation of crosslinks between aPLA-co-TMC chains during electrospinning of the composite system, exemplifying a novel process to produce multicomponent, elastomeric electrospun polymer scaffolds. Although PCL and aPLA-co-TMC were miscible in a co-solvent, a criteria for electrospinning, due to thermodynamic incompatibility of the two polymers as melts, solvent evaporation during electrospinning drove phase separation of these two systems, producing ‘core-shell’ fibres, with the core being composed of PCL, and the shell of crosslinked elastomeric aPLA-co-TMC. The resulting elastic fibrous scaffolds displayed burst pressures and suture retention strengths comparable with human arteries. Cytocompatibility testing with human mesenchymal stem cells confirmed adhesion to, and proliferation on the three-dimensional fibrous network, as well as alignment with highly-organized fibres. This new processing methodology and resulting mechanically-robust composite scaffolds hold significant promise for tubular tissue engineering applications. Autologous small diameter blood vessel grafts are unsuitable solutions for vessel repair. Engineered solutions such as tubular biomaterial scaffolds however have substantial performance criteria to meet, including vessel-like tubular shape, structure and mechanical property slate. We detail herein an innovative methodology to co-electrospin and ‘in-process’ crosslink composite mixtures of Poly(caprolactone) and a newly synthesised acrylated-Poly(lactide-co-trimethylene-carbonate) to create elastomeric, core-shell nanofibrous porous scaffolds in a one-step process. This novel composite system can be used to make aligned scaffolds that encourage stem cell adhesion, growth and morphological control, and produce robust tubular scaffolds of tunable internal diameter and wall thickness that possess mechanical properties approaching those of native vessels, ideal for future applications in the field of vessel tissue engineering." @default.
- W2293622641 created "2016-06-24" @default.
- W2293622641 creator A5020029453 @default.
- W2293622641 creator A5045684989 @default.
- W2293622641 date "2016-05-01" @default.
- W2293622641 modified "2023-10-17" @default.
- W2293622641 title "Development of an in-process UV-crosslinked, electrospun PCL/aPLA-co-TMC composite polymer for tubular tissue engineering applications" @default.
- W2293622641 cites W1748265176 @default.
- W2293622641 cites W1964676930 @default.
- W2293622641 cites W1969649496 @default.
- W2293622641 cites W1981586047 @default.
- W2293622641 cites W1984611768 @default.
- W2293622641 cites W1996837493 @default.
- W2293622641 cites W1998633079 @default.
- W2293622641 cites W2001019345 @default.
- W2293622641 cites W2001139094 @default.
- W2293622641 cites W2023166500 @default.
- W2293622641 cites W2031877584 @default.
- W2293622641 cites W2037476766 @default.
- W2293622641 cites W2038294948 @default.
- W2293622641 cites W2038296497 @default.
- W2293622641 cites W2049163785 @default.
- W2293622641 cites W2064167919 @default.
- W2293622641 cites W2067828733 @default.
- W2293622641 cites W2076491580 @default.
- W2293622641 cites W2082803592 @default.
- W2293622641 cites W2085676229 @default.
- W2293622641 cites W2095666785 @default.
- W2293622641 cites W2097652901 @default.
- W2293622641 cites W2106727463 @default.
- W2293622641 cites W2110959267 @default.
- W2293622641 cites W2118422453 @default.
- W2293622641 cites W2137721915 @default.
- W2293622641 cites W2148852502 @default.
- W2293622641 cites W2155243994 @default.
- W2293622641 cites W2156862232 @default.
- W2293622641 cites W2256577027 @default.
- W2293622641 cites W2320460521 @default.
- W2293622641 cites W2327507165 @default.
- W2293622641 cites W23676112 @default.
- W2293622641 cites W302522192 @default.
- W2293622641 doi "https://doi.org/10.1016/j.actbio.2016.03.013" @default.
- W2293622641 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26969522" @default.
- W2293622641 hasPublicationYear "2016" @default.
- W2293622641 type Work @default.
- W2293622641 sameAs 2293622641 @default.
- W2293622641 citedByCount "32" @default.
- W2293622641 countsByYear W22936226412016 @default.
- W2293622641 countsByYear W22936226412017 @default.
- W2293622641 countsByYear W22936226412018 @default.
- W2293622641 countsByYear W22936226412019 @default.
- W2293622641 countsByYear W22936226412020 @default.
- W2293622641 countsByYear W22936226412021 @default.
- W2293622641 countsByYear W22936226412022 @default.
- W2293622641 crossrefType "journal-article" @default.
- W2293622641 hasAuthorship W2293622641A5020029453 @default.
- W2293622641 hasAuthorship W2293622641A5045684989 @default.
- W2293622641 hasConcept C104779481 @default.
- W2293622641 hasConcept C119394753 @default.
- W2293622641 hasConcept C136229726 @default.
- W2293622641 hasConcept C144796933 @default.
- W2293622641 hasConcept C159985019 @default.
- W2293622641 hasConcept C192562407 @default.
- W2293622641 hasConcept C2779868350 @default.
- W2293622641 hasConcept C2781042915 @default.
- W2293622641 hasConcept C38052585 @default.
- W2293622641 hasConcept C44228677 @default.
- W2293622641 hasConcept C45211672 @default.
- W2293622641 hasConcept C49892992 @default.
- W2293622641 hasConcept C521977710 @default.
- W2293622641 hasConcept C71924100 @default.
- W2293622641 hasConceptScore W2293622641C104779481 @default.
- W2293622641 hasConceptScore W2293622641C119394753 @default.
- W2293622641 hasConceptScore W2293622641C136229726 @default.
- W2293622641 hasConceptScore W2293622641C144796933 @default.
- W2293622641 hasConceptScore W2293622641C159985019 @default.
- W2293622641 hasConceptScore W2293622641C192562407 @default.
- W2293622641 hasConceptScore W2293622641C2779868350 @default.
- W2293622641 hasConceptScore W2293622641C2781042915 @default.
- W2293622641 hasConceptScore W2293622641C38052585 @default.
- W2293622641 hasConceptScore W2293622641C44228677 @default.
- W2293622641 hasConceptScore W2293622641C45211672 @default.
- W2293622641 hasConceptScore W2293622641C49892992 @default.
- W2293622641 hasConceptScore W2293622641C521977710 @default.
- W2293622641 hasConceptScore W2293622641C71924100 @default.
- W2293622641 hasFunder F4320334704 @default.
- W2293622641 hasLocation W22936226411 @default.
- W2293622641 hasLocation W22936226412 @default.
- W2293622641 hasOpenAccess W2293622641 @default.
- W2293622641 hasPrimaryLocation W22936226411 @default.
- W2293622641 hasRelatedWork W1966107042 @default.
- W2293622641 hasRelatedWork W1992113388 @default.
- W2293622641 hasRelatedWork W2034010349 @default.
- W2293622641 hasRelatedWork W2076547672 @default.
- W2293622641 hasRelatedWork W2497792979 @default.
- W2293622641 hasRelatedWork W2949288235 @default.
- W2293622641 hasRelatedWork W2999128922 @default.
- W2293622641 hasRelatedWork W4200059684 @default.