Matches in SemOpenAlex for { <https://semopenalex.org/work/W2293768384> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2293768384 endingPage "629" @default.
- W2293768384 startingPage "615" @default.
- W2293768384 abstract "By the Riemann mapping theorem, one can bijectively map the interior of an n-gon P to that of another n-gon Q conformally (i.e., in an angle preserving manner). However, when this map is extended to the boundary it need not necessarily map the vertices of P to those of Q. For many applications it is important to find the best vertex-preserving mapping between two polygons, i.e., one that minimizes the maximum angle distortion (the so-called dilatation). Such maps exist, are unique, and are known as extremal quasiconformal maps or Teichmuller maps.There are many efficient ways to approximate conformal maps, and the recent breakthrough result by Bishop computes a (1+epsilon)-approximation of the Riemann map in linear time. However, only heuristics have been studied in the case of Teichmuller maps.We present two results in this paper. One studies the problem in the continuous setting and another in the discrete setting.In the continuous setting, we solve the problem of finding a finite time procedure for approximating Teichmuller maps. Our construction is via an iterative procedure that is proven to converge in O(poly(1/epsilon)) iterations to a (1+epsilon)-approximation of the Teichmuller map. Our method uses a reduction of the polygon mapping problem to the marked sphere problem, thus solving a more general problem.In the discrete setting, we reduce the problem of finding an approximation algorithm for computing Teichmuller maps to two basic subroutines, namely, computing discrete 1) compositions and 2) inverses of discretely represented quasiconformal maps. Assuming finite-time solvers for these subroutines we provide a (1+epsilon)-approximation algorithm." @default.
- W2293768384 created "2016-06-24" @default.
- W2293768384 creator A5004026365 @default.
- W2293768384 creator A5029048181 @default.
- W2293768384 creator A5033789263 @default.
- W2293768384 creator A5080620426 @default.
- W2293768384 date "2015-01-01" @default.
- W2293768384 modified "2023-09-22" @default.
- W2293768384 title "Computing Teichmüller Maps between Polygons." @default.
- W2293768384 doi "https://doi.org/10.4230/lipics.socg.2015.615" @default.
- W2293768384 hasPublicationYear "2015" @default.
- W2293768384 type Work @default.
- W2293768384 sameAs 2293768384 @default.
- W2293768384 citedByCount "0" @default.
- W2293768384 crossrefType "proceedings-article" @default.
- W2293768384 hasAuthorship W2293768384A5004026365 @default.
- W2293768384 hasAuthorship W2293768384A5029048181 @default.
- W2293768384 hasAuthorship W2293768384A5033789263 @default.
- W2293768384 hasAuthorship W2293768384A5080620426 @default.
- W2293768384 hasConcept C114614502 @default.
- W2293768384 hasConcept C118615104 @default.
- W2293768384 hasConcept C126042441 @default.
- W2293768384 hasConcept C134306372 @default.
- W2293768384 hasConcept C18556879 @default.
- W2293768384 hasConcept C190694206 @default.
- W2293768384 hasConcept C202444582 @default.
- W2293768384 hasConcept C33923547 @default.
- W2293768384 hasConcept C41008148 @default.
- W2293768384 hasConcept C62354387 @default.
- W2293768384 hasConcept C76155785 @default.
- W2293768384 hasConcept C98214594 @default.
- W2293768384 hasConceptScore W2293768384C114614502 @default.
- W2293768384 hasConceptScore W2293768384C118615104 @default.
- W2293768384 hasConceptScore W2293768384C126042441 @default.
- W2293768384 hasConceptScore W2293768384C134306372 @default.
- W2293768384 hasConceptScore W2293768384C18556879 @default.
- W2293768384 hasConceptScore W2293768384C190694206 @default.
- W2293768384 hasConceptScore W2293768384C202444582 @default.
- W2293768384 hasConceptScore W2293768384C33923547 @default.
- W2293768384 hasConceptScore W2293768384C41008148 @default.
- W2293768384 hasConceptScore W2293768384C62354387 @default.
- W2293768384 hasConceptScore W2293768384C76155785 @default.
- W2293768384 hasConceptScore W2293768384C98214594 @default.
- W2293768384 hasLocation W22937683841 @default.
- W2293768384 hasOpenAccess W2293768384 @default.
- W2293768384 hasPrimaryLocation W22937683841 @default.
- W2293768384 hasRelatedWork W2015576799 @default.
- W2293768384 hasRelatedWork W2025481393 @default.
- W2293768384 hasRelatedWork W2031648156 @default.
- W2293768384 hasRelatedWork W2036612211 @default.
- W2293768384 hasRelatedWork W2036953732 @default.
- W2293768384 hasRelatedWork W2044117007 @default.
- W2293768384 hasRelatedWork W2170862068 @default.
- W2293768384 hasRelatedWork W2336815767 @default.
- W2293768384 hasRelatedWork W2546556819 @default.
- W2293768384 hasRelatedWork W2607782217 @default.
- W2293768384 hasRelatedWork W2804437707 @default.
- W2293768384 hasRelatedWork W2888593209 @default.
- W2293768384 hasRelatedWork W2904931489 @default.
- W2293768384 hasRelatedWork W2969984674 @default.
- W2293768384 hasRelatedWork W2970791680 @default.
- W2293768384 hasRelatedWork W2979043062 @default.
- W2293768384 hasRelatedWork W3121347442 @default.
- W2293768384 hasRelatedWork W3185910872 @default.
- W2293768384 hasRelatedWork W71948572 @default.
- W2293768384 hasRelatedWork W798371298 @default.
- W2293768384 isParatext "false" @default.
- W2293768384 isRetracted "false" @default.
- W2293768384 magId "2293768384" @default.
- W2293768384 workType "article" @default.