Matches in SemOpenAlex for { <https://semopenalex.org/work/W2294152251> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2294152251 abstract "The segmentation of vehicles is a non-linear problem that has been tackled using methods for background subtraction in systems for traffic control. Probabilistic models, such as Gaussian Mixture Models (GMM), estimate the background of dynamic environments in this approach. The general modeling considers independent distributions for each pixel of the image. So, the classification is performed singly. The system uses often only one threshold to classify the pixels into background and foreground regions. This approach doest not work well when the cluster intersection is significant. In the vehicle segmentation, the color of the vehicles are similar to background, so the accuracy is affected. This paper proposes an approach to improve the classification of traffic scenes. This approach uses local thresholds to encourage the segmentation of vehicle regions. These thresholds are estimated by a spatial analysis of the previous classification. The results of the experiment performed shown that the classification process is improved by this approach." @default.
- W2294152251 created "2016-06-24" @default.
- W2294152251 creator A5011171569 @default.
- W2294152251 creator A5080600223 @default.
- W2294152251 creator A5089980103 @default.
- W2294152251 date "2015-11-01" @default.
- W2294152251 modified "2023-09-25" @default.
- W2294152251 title "Adaptive Method for Segmentation of Vehicles through Local Threshold in the Gaussian Mixture Model" @default.
- W2294152251 cites W1964869106 @default.
- W2294152251 cites W2065429801 @default.
- W2294152251 cites W2080123959 @default.
- W2294152251 cites W2096989099 @default.
- W2294152251 cites W2102625004 @default.
- W2294152251 cites W2106839910 @default.
- W2294152251 cites W2132609619 @default.
- W2294152251 cites W2135737723 @default.
- W2294152251 cites W2547778158 @default.
- W2294152251 cites W4248936881 @default.
- W2294152251 doi "https://doi.org/10.1109/bracis.2015.33" @default.
- W2294152251 hasPublicationYear "2015" @default.
- W2294152251 type Work @default.
- W2294152251 sameAs 2294152251 @default.
- W2294152251 citedByCount "1" @default.
- W2294152251 countsByYear W22941522512021 @default.
- W2294152251 crossrefType "proceedings-article" @default.
- W2294152251 hasAuthorship W2294152251A5011171569 @default.
- W2294152251 hasAuthorship W2294152251A5080600223 @default.
- W2294152251 hasAuthorship W2294152251A5089980103 @default.
- W2294152251 hasConcept C114289077 @default.
- W2294152251 hasConcept C121332964 @default.
- W2294152251 hasConcept C124504099 @default.
- W2294152251 hasConcept C153180895 @default.
- W2294152251 hasConcept C154945302 @default.
- W2294152251 hasConcept C160633673 @default.
- W2294152251 hasConcept C163716315 @default.
- W2294152251 hasConcept C205649164 @default.
- W2294152251 hasConcept C31972630 @default.
- W2294152251 hasConcept C32653426 @default.
- W2294152251 hasConcept C41008148 @default.
- W2294152251 hasConcept C49937458 @default.
- W2294152251 hasConcept C58640448 @default.
- W2294152251 hasConcept C61224824 @default.
- W2294152251 hasConcept C61326573 @default.
- W2294152251 hasConcept C62520636 @default.
- W2294152251 hasConcept C64543145 @default.
- W2294152251 hasConcept C65885262 @default.
- W2294152251 hasConcept C89600930 @default.
- W2294152251 hasConceptScore W2294152251C114289077 @default.
- W2294152251 hasConceptScore W2294152251C121332964 @default.
- W2294152251 hasConceptScore W2294152251C124504099 @default.
- W2294152251 hasConceptScore W2294152251C153180895 @default.
- W2294152251 hasConceptScore W2294152251C154945302 @default.
- W2294152251 hasConceptScore W2294152251C160633673 @default.
- W2294152251 hasConceptScore W2294152251C163716315 @default.
- W2294152251 hasConceptScore W2294152251C205649164 @default.
- W2294152251 hasConceptScore W2294152251C31972630 @default.
- W2294152251 hasConceptScore W2294152251C32653426 @default.
- W2294152251 hasConceptScore W2294152251C41008148 @default.
- W2294152251 hasConceptScore W2294152251C49937458 @default.
- W2294152251 hasConceptScore W2294152251C58640448 @default.
- W2294152251 hasConceptScore W2294152251C61224824 @default.
- W2294152251 hasConceptScore W2294152251C61326573 @default.
- W2294152251 hasConceptScore W2294152251C62520636 @default.
- W2294152251 hasConceptScore W2294152251C64543145 @default.
- W2294152251 hasConceptScore W2294152251C65885262 @default.
- W2294152251 hasConceptScore W2294152251C89600930 @default.
- W2294152251 hasLocation W22941522511 @default.
- W2294152251 hasOpenAccess W2294152251 @default.
- W2294152251 hasPrimaryLocation W22941522511 @default.
- W2294152251 hasRelatedWork W144883078 @default.
- W2294152251 hasRelatedWork W1631910785 @default.
- W2294152251 hasRelatedWork W1669643531 @default.
- W2294152251 hasRelatedWork W2110230079 @default.
- W2294152251 hasRelatedWork W2294152251 @default.
- W2294152251 hasRelatedWork W2536634271 @default.
- W2294152251 hasRelatedWork W2739874619 @default.
- W2294152251 hasRelatedWork W3147816421 @default.
- W2294152251 hasRelatedWork W2182382398 @default.
- W2294152251 hasRelatedWork W3000238 @default.
- W2294152251 isParatext "false" @default.
- W2294152251 isRetracted "false" @default.
- W2294152251 magId "2294152251" @default.
- W2294152251 workType "article" @default.