Matches in SemOpenAlex for { <https://semopenalex.org/work/W2294262021> ?p ?o ?g. }
- W2294262021 abstract "Background: Time-dependent density functional theory is widely used to describe excitations of many-fermion systems. In its many applications, three-dimensional (3D) coordinate-space representation is used, and infinite-domain calculations are limited to a finite volume represented by a spatial box. For finite quantum systems (atoms, molecules, nuclei, hadrons), the commonly used periodic or reflecting boundary conditions introduce spurious quantization of the continuum states and artificial reflections from boundary; hence, an incorrect treatment of evaporated particles.Purpose: The finite-volume artifacts for finite systems can be practically cured by invoking an absorbing potential in a certain boundary region sufficiently far from the described system. However, such absorption cannot be applied in the calculations of infinite matter (crystal electrons, quantum fluids, neutron star crust), which suffer from unphysical effects stemming from a finite computational box used. Here, twist-averaged boundary conditions (TABC) have been used successfully to diminish the finite-volume effects. In this work, we extend TABC to time-dependent modes.Method: We use the 3D time-dependent density functional framework with the Skyrme energy density functional. The practical calculations are carried out for small- and large-amplitude electric dipole and quadrupole oscillations of $^{16}mathrm{O}$. We apply and compare three kinds of boundary conditions: periodic, absorbing, and twist-averaged.Results: Calculations employing absorbing boundary conditions (ABC) and TABC are superior to those based on periodic boundary conditions. For low-energy excitations, TABC and ABC variants yield very similar results. With only four twist phases per spatial direction in TABC, one obtains an excellent reduction of spurious fluctuations. In the nonlinear regime, one has to deal with evaporated particles. In TABC, the floating nucleon gas remains in the box; the amount of nucleons in the gas is found to be roughly the same as the number of absorbed particles in ABC.Conclusion: We demonstrate that by using TABC, one can reduce finite-volume effects drastically without adding any additional parameters associated with absorption at large distances. Moreover, TABC are an obvious choice for time-dependent calculations for infinite systems. Since TABC calculations for different twists can be performed independently, the method is trivially adapted to parallel computing." @default.
- W2294262021 created "2016-06-24" @default.
- W2294262021 creator A5029111186 @default.
- W2294262021 creator A5044895323 @default.
- W2294262021 creator A5078264635 @default.
- W2294262021 date "2016-05-02" @default.
- W2294262021 modified "2023-10-12" @default.
- W2294262021 title "Time-dependent density functional theory with twist-averaged boundary conditions" @default.
- W2294262021 cites W1483870578 @default.
- W2294262021 cites W1543041828 @default.
- W2294262021 cites W1956912110 @default.
- W2294262021 cites W1968906863 @default.
- W2294262021 cites W1977146182 @default.
- W2294262021 cites W1982095217 @default.
- W2294262021 cites W1986293636 @default.
- W2294262021 cites W2000690176 @default.
- W2294262021 cites W2005088369 @default.
- W2294262021 cites W2010310780 @default.
- W2294262021 cites W2011928664 @default.
- W2294262021 cites W2023399024 @default.
- W2294262021 cites W2030005717 @default.
- W2294262021 cites W2036918693 @default.
- W2294262021 cites W2039023325 @default.
- W2294262021 cites W2039423488 @default.
- W2294262021 cites W2041460727 @default.
- W2294262021 cites W2043842725 @default.
- W2294262021 cites W2043903447 @default.
- W2294262021 cites W2050061373 @default.
- W2294262021 cites W2050632958 @default.
- W2294262021 cites W2053808988 @default.
- W2294262021 cites W2053999258 @default.
- W2294262021 cites W2057158073 @default.
- W2294262021 cites W2058398316 @default.
- W2294262021 cites W2060623703 @default.
- W2294262021 cites W2061662020 @default.
- W2294262021 cites W2069134674 @default.
- W2294262021 cites W2071933030 @default.
- W2294262021 cites W2083605527 @default.
- W2294262021 cites W2084054364 @default.
- W2294262021 cites W2086203644 @default.
- W2294262021 cites W2090648492 @default.
- W2294262021 cites W2092076272 @default.
- W2294262021 cites W2093332924 @default.
- W2294262021 cites W2094408117 @default.
- W2294262021 cites W2098429312 @default.
- W2294262021 cites W2120114785 @default.
- W2294262021 cites W2120145199 @default.
- W2294262021 cites W2123795353 @default.
- W2294262021 cites W2126140700 @default.
- W2294262021 cites W2134344701 @default.
- W2294262021 cites W2141439858 @default.
- W2294262021 cites W2152350786 @default.
- W2294262021 cites W2167298291 @default.
- W2294262021 cites W2222651382 @default.
- W2294262021 cites W2320013318 @default.
- W2294262021 cites W2962742132 @default.
- W2294262021 cites W304517000 @default.
- W2294262021 cites W3099917570 @default.
- W2294262021 cites W3103780226 @default.
- W2294262021 cites W3104695398 @default.
- W2294262021 cites W4240883129 @default.
- W2294262021 cites W4297924389 @default.
- W2294262021 cites W4300816443 @default.
- W2294262021 cites W73583073 @default.
- W2294262021 cites W755192090 @default.
- W2294262021 doi "https://doi.org/10.1103/physrevc.93.054304" @default.
- W2294262021 hasPublicationYear "2016" @default.
- W2294262021 type Work @default.
- W2294262021 sameAs 2294262021 @default.
- W2294262021 citedByCount "26" @default.
- W2294262021 countsByYear W22942620212017 @default.
- W2294262021 countsByYear W22942620212018 @default.
- W2294262021 countsByYear W22942620212019 @default.
- W2294262021 countsByYear W22942620212020 @default.
- W2294262021 countsByYear W22942620212021 @default.
- W2294262021 countsByYear W22942620212022 @default.
- W2294262021 countsByYear W22942620212023 @default.
- W2294262021 crossrefType "journal-article" @default.
- W2294262021 hasAuthorship W2294262021A5029111186 @default.
- W2294262021 hasAuthorship W2294262021A5044895323 @default.
- W2294262021 hasAuthorship W2294262021A5078264635 @default.
- W2294262021 hasBestOaLocation W22942620211 @default.
- W2294262021 hasConcept C112675119 @default.
- W2294262021 hasConcept C121332964 @default.
- W2294262021 hasConcept C134306372 @default.
- W2294262021 hasConcept C162291796 @default.
- W2294262021 hasConcept C173523689 @default.
- W2294262021 hasConcept C182310444 @default.
- W2294262021 hasConcept C2524010 @default.
- W2294262021 hasConcept C2776196297 @default.
- W2294262021 hasConcept C33923547 @default.
- W2294262021 hasConcept C39984356 @default.
- W2294262021 hasConcept C62354387 @default.
- W2294262021 hasConcept C62520636 @default.
- W2294262021 hasConcept C74650414 @default.
- W2294262021 hasConceptScore W2294262021C112675119 @default.
- W2294262021 hasConceptScore W2294262021C121332964 @default.
- W2294262021 hasConceptScore W2294262021C134306372 @default.
- W2294262021 hasConceptScore W2294262021C162291796 @default.
- W2294262021 hasConceptScore W2294262021C173523689 @default.