Matches in SemOpenAlex for { <https://semopenalex.org/work/W2294415277> ?p ?o ?g. }
- W2294415277 abstract "Several domains are inherently structural; relevant data cannot be represented as a single table without significant loss of information. The development of predictive models in such domains becomes a challenge as traditional machine learning algorithms which deal with attribute-valued data cannot be used. One approach to develop predictive models in such domains is to represent the relevant data as labeled graphs and treat subgraphs of these graphs as features on which to base the predictive model. The general area of this research is the development of predictive models for such domains. Specifically, we target domains which are readily modeled as sets of separate graphs (rather than a single graph) and on the tasks of binary classification and regression on such graphs. An example would be learning a binary classification model that distinguishes between aliphatic and aromatic compounds or a regression model for predicting the melting points of chemical compounds.The contributions of this work include a comprehensive comparison of current approaches to graph classification and regression to identify their strengths and weaknesses, the development of novel pruning mechanisms in the search for subgraph features for the graph regression problem, the development of a new algorithm for graph regression called gRegress and the application of current approaches in graph classification and regression to various problems in computational chemistry. Our empirical results indicate that our pruning mechanisms can bring about a significant improvement in the search for relevant subgraph features based on their correlation with each other and the target, sometimes by an order of magnitude. Our empirical results also indicate that gRegress addresses a key weakness in the current work on graph regression, namely, the need for a combination of linear models." @default.
- W2294415277 created "2016-06-24" @default.
- W2294415277 creator A5034992584 @default.
- W2294415277 creator A5044712355 @default.
- W2294415277 date "2009-01-01" @default.
- W2294415277 modified "2023-09-27" @default.
- W2294415277 title "Empirical comparison of graph classification and regression algorithms" @default.
- W2294415277 cites W119220656 @default.
- W2294415277 cites W1483671890 @default.
- W2294415277 cites W1524761913 @default.
- W2294415277 cites W1574862351 @default.
- W2294415277 cites W1592376869 @default.
- W2294415277 cites W1601740268 @default.
- W2294415277 cites W1641749581 @default.
- W2294415277 cites W1816257748 @default.
- W2294415277 cites W1949696217 @default.
- W2294415277 cites W1964357740 @default.
- W2294415277 cites W1967642681 @default.
- W2294415277 cites W1996824494 @default.
- W2294415277 cites W2011039300 @default.
- W2294415277 cites W2013894207 @default.
- W2294415277 cites W2076498053 @default.
- W2294415277 cites W2097904397 @default.
- W2294415277 cites W2103119124 @default.
- W2294415277 cites W2104748762 @default.
- W2294415277 cites W2107770702 @default.
- W2294415277 cites W2112076978 @default.
- W2294415277 cites W2118349699 @default.
- W2294415277 cites W2118981984 @default.
- W2294415277 cites W2124996875 @default.
- W2294415277 cites W2126359798 @default.
- W2294415277 cites W2129848288 @default.
- W2294415277 cites W2130426318 @default.
- W2294415277 cites W2131374321 @default.
- W2294415277 cites W2136593687 @default.
- W2294415277 cites W2138024338 @default.
- W2294415277 cites W2144587512 @default.
- W2294415277 cites W2161723275 @default.
- W2294415277 cites W2162481448 @default.
- W2294415277 cites W2168209541 @default.
- W2294415277 cites W2170177524 @default.
- W2294415277 cites W2170726034 @default.
- W2294415277 cites W2172037773 @default.
- W2294415277 cites W2526759295 @default.
- W2294415277 cites W82431984 @default.
- W2294415277 hasPublicationYear "2009" @default.
- W2294415277 type Work @default.
- W2294415277 sameAs 2294415277 @default.
- W2294415277 citedByCount "0" @default.
- W2294415277 crossrefType "journal-article" @default.
- W2294415277 hasAuthorship W2294415277A5034992584 @default.
- W2294415277 hasAuthorship W2294415277A5044712355 @default.
- W2294415277 hasConcept C105795698 @default.
- W2294415277 hasConcept C108010975 @default.
- W2294415277 hasConcept C11413529 @default.
- W2294415277 hasConcept C119857082 @default.
- W2294415277 hasConcept C12267149 @default.
- W2294415277 hasConcept C124101348 @default.
- W2294415277 hasConcept C132525143 @default.
- W2294415277 hasConcept C154945302 @default.
- W2294415277 hasConcept C33923547 @default.
- W2294415277 hasConcept C41008148 @default.
- W2294415277 hasConcept C6557445 @default.
- W2294415277 hasConcept C66905080 @default.
- W2294415277 hasConcept C80444323 @default.
- W2294415277 hasConcept C83546350 @default.
- W2294415277 hasConcept C86803240 @default.
- W2294415277 hasConceptScore W2294415277C105795698 @default.
- W2294415277 hasConceptScore W2294415277C108010975 @default.
- W2294415277 hasConceptScore W2294415277C11413529 @default.
- W2294415277 hasConceptScore W2294415277C119857082 @default.
- W2294415277 hasConceptScore W2294415277C12267149 @default.
- W2294415277 hasConceptScore W2294415277C124101348 @default.
- W2294415277 hasConceptScore W2294415277C132525143 @default.
- W2294415277 hasConceptScore W2294415277C154945302 @default.
- W2294415277 hasConceptScore W2294415277C33923547 @default.
- W2294415277 hasConceptScore W2294415277C41008148 @default.
- W2294415277 hasConceptScore W2294415277C6557445 @default.
- W2294415277 hasConceptScore W2294415277C66905080 @default.
- W2294415277 hasConceptScore W2294415277C80444323 @default.
- W2294415277 hasConceptScore W2294415277C83546350 @default.
- W2294415277 hasConceptScore W2294415277C86803240 @default.
- W2294415277 hasLocation W22944152771 @default.
- W2294415277 hasOpenAccess W2294415277 @default.
- W2294415277 hasPrimaryLocation W22944152771 @default.
- W2294415277 hasRelatedWork W1165741764 @default.
- W2294415277 hasRelatedWork W2017063234 @default.
- W2294415277 hasRelatedWork W2080731696 @default.
- W2294415277 hasRelatedWork W2131020929 @default.
- W2294415277 hasRelatedWork W2138152898 @default.
- W2294415277 hasRelatedWork W2151598303 @default.
- W2294415277 hasRelatedWork W2299623326 @default.
- W2294415277 hasRelatedWork W2346416401 @default.
- W2294415277 hasRelatedWork W2400700552 @default.
- W2294415277 hasRelatedWork W2609888011 @default.
- W2294415277 hasRelatedWork W2807851731 @default.
- W2294415277 hasRelatedWork W2911665614 @default.
- W2294415277 hasRelatedWork W2944850456 @default.
- W2294415277 hasRelatedWork W2964106426 @default.
- W2294415277 hasRelatedWork W3017027852 @default.