Matches in SemOpenAlex for { <https://semopenalex.org/work/W2294546921> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2294546921 abstract "In order to overcome many inherent defects of support vector machine (SVM), for example, the kernel function must satisfy the Mercer condition, relevance vector machine (RVM) was proposed to avoid these shortcomings of SVM This study concerns with the performance of RVM and SVM for regression and classification problem. Because RVM is based on Bayesian framework, a priori knowledge of the penalty term is introduced, the RVM needless relevance vectors (RVs) (support vectors (SVs) in SVM) but better generalization ability than SVM. In this paper, Sparse Bayesian learning (SBL) is firstly introduced and then RVM regression and classification models which based on SBL are introduced secondly, and then by inference the parameters, the RVM learning is transform into maximize the marginal likelihood function estimation, and give three kinds of commonly used estimation methods. Finally, we do some simulation experiments to show that the RVM has less RVs or SVs but better generalization ability than SVM whether regression or classification case, and also show that different kernel functions will impact the performance of RVM. However, there does not exist the performance of a kernel function is much better than other kernel functions." @default.
- W2294546921 created "2016-06-24" @default.
- W2294546921 creator A5000562106 @default.
- W2294546921 creator A5023313887 @default.
- W2294546921 creator A5035095878 @default.
- W2294546921 creator A5084540043 @default.
- W2294546921 date "2015-12-01" @default.
- W2294546921 modified "2023-09-23" @default.
- W2294546921 title "Research on the performance of relevance vector machine for regression and classification" @default.
- W2294546921 cites W1591455812 @default.
- W2294546921 cites W1596717185 @default.
- W2294546921 cites W1851258275 @default.
- W2294546921 cites W1974528911 @default.
- W2294546921 cites W2041406732 @default.
- W2294546921 cites W2057144102 @default.
- W2294546921 cites W2088538739 @default.
- W2294546921 cites W2169535263 @default.
- W2294546921 cites W2911546748 @default.
- W2294546921 doi "https://doi.org/10.1109/iaeac.2015.7428657" @default.
- W2294546921 hasPublicationYear "2015" @default.
- W2294546921 type Work @default.
- W2294546921 sameAs 2294546921 @default.
- W2294546921 citedByCount "3" @default.
- W2294546921 countsByYear W22945469212021 @default.
- W2294546921 countsByYear W22945469212022 @default.
- W2294546921 crossrefType "proceedings-article" @default.
- W2294546921 hasAuthorship W2294546921A5000562106 @default.
- W2294546921 hasAuthorship W2294546921A5023313887 @default.
- W2294546921 hasAuthorship W2294546921A5035095878 @default.
- W2294546921 hasAuthorship W2294546921A5084540043 @default.
- W2294546921 hasConcept C105795698 @default.
- W2294546921 hasConcept C119857082 @default.
- W2294546921 hasConcept C12267149 @default.
- W2294546921 hasConcept C124101348 @default.
- W2294546921 hasConcept C14948415 @default.
- W2294546921 hasConcept C154945302 @default.
- W2294546921 hasConcept C158154518 @default.
- W2294546921 hasConcept C17744445 @default.
- W2294546921 hasConcept C199539241 @default.
- W2294546921 hasConcept C33923547 @default.
- W2294546921 hasConcept C41008148 @default.
- W2294546921 hasConcept C83546350 @default.
- W2294546921 hasConceptScore W2294546921C105795698 @default.
- W2294546921 hasConceptScore W2294546921C119857082 @default.
- W2294546921 hasConceptScore W2294546921C12267149 @default.
- W2294546921 hasConceptScore W2294546921C124101348 @default.
- W2294546921 hasConceptScore W2294546921C14948415 @default.
- W2294546921 hasConceptScore W2294546921C154945302 @default.
- W2294546921 hasConceptScore W2294546921C158154518 @default.
- W2294546921 hasConceptScore W2294546921C17744445 @default.
- W2294546921 hasConceptScore W2294546921C199539241 @default.
- W2294546921 hasConceptScore W2294546921C33923547 @default.
- W2294546921 hasConceptScore W2294546921C41008148 @default.
- W2294546921 hasConceptScore W2294546921C83546350 @default.
- W2294546921 hasLocation W22945469211 @default.
- W2294546921 hasOpenAccess W2294546921 @default.
- W2294546921 hasPrimaryLocation W22945469211 @default.
- W2294546921 hasRelatedWork W1983450045 @default.
- W2294546921 hasRelatedWork W1996922505 @default.
- W2294546921 hasRelatedWork W2022782300 @default.
- W2294546921 hasRelatedWork W2033686692 @default.
- W2294546921 hasRelatedWork W2101819884 @default.
- W2294546921 hasRelatedWork W2182184513 @default.
- W2294546921 hasRelatedWork W2390299251 @default.
- W2294546921 hasRelatedWork W2528215262 @default.
- W2294546921 hasRelatedWork W4205958290 @default.
- W2294546921 hasRelatedWork W2244511066 @default.
- W2294546921 isParatext "false" @default.
- W2294546921 isRetracted "false" @default.
- W2294546921 magId "2294546921" @default.
- W2294546921 workType "article" @default.