Matches in SemOpenAlex for { <https://semopenalex.org/work/W2294586008> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2294586008 endingPage "432" @default.
- W2294586008 startingPage "423" @default.
- W2294586008 abstract "In the present study, two different data-driven models, artificial neural network (ANN) and multiple linear regression (MLR) models, have been developed to predict the 28 days compressive strength of concrete. Seven different parameters namely 3/4 mm sand, 3/8 mm sand, cement content, gravel, maximums size of aggregate, fineness modulus, and watercement ratio were considered as input variables. For each set of these input variables, the 28 days compressive strength of concrete were determined. A total number of 140 input-target pairs were gathered, divided into 70%, 15%, and 15% for training, validation, and testing steps in artificial neural network model, respectively, and divided into 85% and 15% for training and testing steps in multiple linear regression model, respectively. Comparing the testing steps of both of the models, it can be concluded that the artificial neural network model is more capable in predicting the compressive strength of concrete in compare to multiple linear regression model. In other words, multiple linear regression model is better to be used for preliminary mix design of concrete, and artificial neural network model is recommended in the mix design optimization and in the case of higher accuracy requirements." @default.
- W2294586008 created "2016-06-24" @default.
- W2294586008 creator A5009263104 @default.
- W2294586008 creator A5023920232 @default.
- W2294586008 date "2016-09-10" @default.
- W2294586008 modified "2023-09-25" @default.
- W2294586008 title "EVALUATION OF CONCRETE COMPRESSIVE STRENGTH USING ARTIFICIAL NEURAL NETWORK AND MULTIPLE LINEAR REGRESSION MODELS" @default.
- W2294586008 cites W1973724244 @default.
- W2294586008 cites W2008657684 @default.
- W2294586008 cites W2032726088 @default.
- W2294586008 cites W2035864983 @default.
- W2294586008 cites W2059113047 @default.
- W2294586008 cites W2061160968 @default.
- W2294586008 cites W2079020577 @default.
- W2294586008 cites W2093286138 @default.
- W2294586008 cites W2123474505 @default.
- W2294586008 cites W2175729565 @default.
- W2294586008 cites W2290068163 @default.
- W2294586008 cites W2318606179 @default.
- W2294586008 cites W2800855144 @default.
- W2294586008 cites W2802659650 @default.
- W2294586008 hasPublicationYear "2016" @default.
- W2294586008 type Work @default.
- W2294586008 sameAs 2294586008 @default.
- W2294586008 citedByCount "8" @default.
- W2294586008 countsByYear W22945860082017 @default.
- W2294586008 countsByYear W22945860082018 @default.
- W2294586008 countsByYear W22945860082019 @default.
- W2294586008 countsByYear W22945860082020 @default.
- W2294586008 countsByYear W22945860082021 @default.
- W2294586008 crossrefType "journal-article" @default.
- W2294586008 hasAuthorship W2294586008A5009263104 @default.
- W2294586008 hasAuthorship W2294586008A5023920232 @default.
- W2294586008 hasConcept C105795698 @default.
- W2294586008 hasConcept C119857082 @default.
- W2294586008 hasConcept C127413603 @default.
- W2294586008 hasConcept C152877465 @default.
- W2294586008 hasConcept C159985019 @default.
- W2294586008 hasConcept C192562407 @default.
- W2294586008 hasConcept C30407753 @default.
- W2294586008 hasConcept C33923547 @default.
- W2294586008 hasConcept C41008148 @default.
- W2294586008 hasConcept C4679612 @default.
- W2294586008 hasConcept C48921125 @default.
- W2294586008 hasConcept C50644808 @default.
- W2294586008 hasConceptScore W2294586008C105795698 @default.
- W2294586008 hasConceptScore W2294586008C119857082 @default.
- W2294586008 hasConceptScore W2294586008C127413603 @default.
- W2294586008 hasConceptScore W2294586008C152877465 @default.
- W2294586008 hasConceptScore W2294586008C159985019 @default.
- W2294586008 hasConceptScore W2294586008C192562407 @default.
- W2294586008 hasConceptScore W2294586008C30407753 @default.
- W2294586008 hasConceptScore W2294586008C33923547 @default.
- W2294586008 hasConceptScore W2294586008C41008148 @default.
- W2294586008 hasConceptScore W2294586008C4679612 @default.
- W2294586008 hasConceptScore W2294586008C48921125 @default.
- W2294586008 hasConceptScore W2294586008C50644808 @default.
- W2294586008 hasIssue "3" @default.
- W2294586008 hasLocation W22945860081 @default.
- W2294586008 hasOpenAccess W2294586008 @default.
- W2294586008 hasPrimaryLocation W22945860081 @default.
- W2294586008 hasRelatedWork W1973724244 @default.
- W2294586008 hasRelatedWork W2061160968 @default.
- W2294586008 hasRelatedWork W2072034916 @default.
- W2294586008 hasRelatedWork W2077553235 @default.
- W2294586008 hasRelatedWork W2083036585 @default.
- W2294586008 hasRelatedWork W2088053778 @default.
- W2294586008 hasRelatedWork W2101226377 @default.
- W2294586008 hasRelatedWork W2112497481 @default.
- W2294586008 hasRelatedWork W2136839460 @default.
- W2294586008 hasRelatedWork W2145300739 @default.
- W2294586008 hasRelatedWork W2280413930 @default.
- W2294586008 hasRelatedWork W2519298785 @default.
- W2294586008 hasRelatedWork W2523984406 @default.
- W2294586008 hasRelatedWork W2531491958 @default.
- W2294586008 hasRelatedWork W2552806983 @default.
- W2294586008 hasRelatedWork W2791994895 @default.
- W2294586008 hasRelatedWork W2802659650 @default.
- W2294586008 hasRelatedWork W2907918731 @default.
- W2294586008 hasRelatedWork W2981987110 @default.
- W2294586008 hasRelatedWork W3105825274 @default.
- W2294586008 hasVolume "6" @default.
- W2294586008 isParatext "false" @default.
- W2294586008 isRetracted "false" @default.
- W2294586008 magId "2294586008" @default.
- W2294586008 workType "article" @default.