Matches in SemOpenAlex for { <https://semopenalex.org/work/W2294621474> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2294621474 endingPage "207" @default.
- W2294621474 startingPage "199" @default.
- W2294621474 abstract "Recent drought and population growth are planting unprecedented demand for the use of available limited water resources. Irrigated agriculture is one of the major consumers of fresh water. Huge amount of water in irrigated agriculture is wasted due to poor water management practices. To improve water management in irrigated areas, models for estimation of future water requirements are needed. Developing a model for Irrigation water demand forecasting based on historical data is critical to effectively improve the water management practices and maximise water productivity. Data mining can be used effectively to build such models. Data mining is capable of extracting and interpreting the hidden patterns from a large amount of hydrological data. In recent years, use of data mining has become more common in hydrological modelling.In this paper, we compare the effectiveness of six different data mining methods namely decision tree (DT), artificial neural networks (ANNs), systematically developed forest (SysFor) for multiple trees, support vector machine (SVM), logistic regression and the traditional Evapotranspiration (ETc) methods and evaluate the performance of these models to predict irrigation water demand using pre-processed dataset. The pre-processed dataset we use in this study and SysFor were never used before to compare with any other classification techniques. Our experimental result indicates SysFor produces the best prediction with 97.5% accuracy followed by decision tree with 96% and ANN with 95% respectively by closely matching the predictions for water demand with actual water usage. Therefore, we recommend using SysFor and DT models for irrigation water demand forecasting." @default.
- W2294621474 created "2016-06-24" @default.
- W2294621474 creator A5020993797 @default.
- W2294621474 creator A5044023082 @default.
- W2294621474 creator A5063581448 @default.
- W2294621474 date "2012-12-05" @default.
- W2294621474 modified "2023-09-24" @default.
- W2294621474 title "Evaluating the performance of several data mining methods for predicting irrigation water requirement" @default.
- W2294621474 cites W102510005 @default.
- W2294621474 cites W1590685006 @default.
- W2294621474 cites W1681699189 @default.
- W2294621474 cites W1965295747 @default.
- W2294621474 cites W1988293539 @default.
- W2294621474 cites W200078026 @default.
- W2294621474 cites W2003233718 @default.
- W2294621474 cites W2055412520 @default.
- W2294621474 cites W2059332147 @default.
- W2294621474 cites W2064672371 @default.
- W2294621474 cites W2083886212 @default.
- W2294621474 cites W2084678032 @default.
- W2294621474 cites W2089454337 @default.
- W2294621474 cites W2090635835 @default.
- W2294621474 cites W2109814911 @default.
- W2294621474 cites W2113794846 @default.
- W2294621474 cites W2114824684 @default.
- W2294621474 cites W2125055259 @default.
- W2294621474 cites W2130109162 @default.
- W2294621474 cites W2131047005 @default.
- W2294621474 cites W2140190241 @default.
- W2294621474 cites W2145237692 @default.
- W2294621474 cites W2156909104 @default.
- W2294621474 cites W2169356794 @default.
- W2294621474 cites W2178712853 @default.
- W2294621474 cites W2400715252 @default.
- W2294621474 cites W740415 @default.
- W2294621474 cites W74928954 @default.
- W2294621474 hasPublicationYear "2012" @default.
- W2294621474 type Work @default.
- W2294621474 sameAs 2294621474 @default.
- W2294621474 citedByCount "6" @default.
- W2294621474 countsByYear W22946214742016 @default.
- W2294621474 countsByYear W22946214742018 @default.
- W2294621474 countsByYear W22946214742019 @default.
- W2294621474 countsByYear W22946214742020 @default.
- W2294621474 crossrefType "proceedings-article" @default.
- W2294621474 hasAuthorship W2294621474A5020993797 @default.
- W2294621474 hasAuthorship W2294621474A5044023082 @default.
- W2294621474 hasAuthorship W2294621474A5063581448 @default.
- W2294621474 hasConcept C118518473 @default.
- W2294621474 hasConcept C119857082 @default.
- W2294621474 hasConcept C12267149 @default.
- W2294621474 hasConcept C124101348 @default.
- W2294621474 hasConcept C153823671 @default.
- W2294621474 hasConcept C176783924 @default.
- W2294621474 hasConcept C18903297 @default.
- W2294621474 hasConcept C41008148 @default.
- W2294621474 hasConcept C50644808 @default.
- W2294621474 hasConcept C84525736 @default.
- W2294621474 hasConcept C86803240 @default.
- W2294621474 hasConceptScore W2294621474C118518473 @default.
- W2294621474 hasConceptScore W2294621474C119857082 @default.
- W2294621474 hasConceptScore W2294621474C12267149 @default.
- W2294621474 hasConceptScore W2294621474C124101348 @default.
- W2294621474 hasConceptScore W2294621474C153823671 @default.
- W2294621474 hasConceptScore W2294621474C176783924 @default.
- W2294621474 hasConceptScore W2294621474C18903297 @default.
- W2294621474 hasConceptScore W2294621474C41008148 @default.
- W2294621474 hasConceptScore W2294621474C50644808 @default.
- W2294621474 hasConceptScore W2294621474C84525736 @default.
- W2294621474 hasConceptScore W2294621474C86803240 @default.
- W2294621474 hasLocation W22946214741 @default.
- W2294621474 hasOpenAccess W2294621474 @default.
- W2294621474 hasPrimaryLocation W22946214741 @default.
- W2294621474 hasRelatedWork W1412805082 @default.
- W2294621474 hasRelatedWork W1977963490 @default.
- W2294621474 hasRelatedWork W2012689010 @default.
- W2294621474 hasRelatedWork W2036845311 @default.
- W2294621474 hasRelatedWork W2097109548 @default.
- W2294621474 hasRelatedWork W2127091915 @default.
- W2294621474 hasRelatedWork W2129573895 @default.
- W2294621474 hasRelatedWork W2289248850 @default.
- W2294621474 hasRelatedWork W2623601021 @default.
- W2294621474 hasRelatedWork W2899841749 @default.
- W2294621474 hasRelatedWork W3002846642 @default.
- W2294621474 hasRelatedWork W3017278727 @default.
- W2294621474 hasRelatedWork W3022400318 @default.
- W2294621474 hasRelatedWork W3082667387 @default.
- W2294621474 hasRelatedWork W3089982715 @default.
- W2294621474 hasRelatedWork W3122708085 @default.
- W2294621474 hasRelatedWork W3158422098 @default.
- W2294621474 hasRelatedWork W3175913265 @default.
- W2294621474 hasRelatedWork W3197845621 @default.
- W2294621474 hasRelatedWork W834069591 @default.
- W2294621474 isParatext "false" @default.
- W2294621474 isRetracted "false" @default.
- W2294621474 magId "2294621474" @default.
- W2294621474 workType "article" @default.