Matches in SemOpenAlex for { <https://semopenalex.org/work/W2294622949> ?p ?o ?g. }
- W2294622949 endingPage "3385" @default.
- W2294622949 startingPage "3368" @default.
- W2294622949 abstract "Binary measurements arise naturally in a variety of statistics and engineering applications. They may be inherent to the problem-for example, in determining the relationship between genetics and the presence or absence of a disease-or they may be a result of extreme quantization. A recent influx of literature has suggested that using prior signal information can greatly improve the ability to reconstruct a signal from binary measurements. This is exemplified by one-bit compressed sensing, which takes the compressed sensing model but assumes that only the sign of each measurement is retained. It has recently been shown that the number of one-bit measurements required for signal estimation mirrors that of unquantized compressed sensing. Indeed, s-sparse signals in Rn can be estimated (up to normalization) from Ω(slog (n/s)) one-bit measurements. Nevertheless, controlling the precise accuracy of the error estimate remains an open challenge. In this paper, we focus on optimizing the decay of the error as a function of the oversampling factor λ := m/(s log(n/s)), where m is the number of measurements. It is known that the error in reconstructing sparse signals from standard one-bit measurements is bounded below by Ω(λ-1). Without adjusting the measurement procedure, reducing this polynomial error decay rate is impossible. However, we show that an adaptive choice of the thresholds used for quantization can lower the error rate to e-Ω(λ). This improves upon guarantees for other methods of adaptive thresholding, such as sigma- delta quantization. We develop a general recursive strategy to achieve this exponential decay and two specific polynomial-time algorithms, which fall into this framework, one based on convex programming and one on hard thresholding. Our work bridges the one-bit compressed sensing model, in which the engineer controls the measurement procedure, to sigma-delta and successive approximation quantization. Moreover, the principle is extendable to signal reconstruction problems in a variety of binary statistical models as well as statistical estimation problems like logistic regression." @default.
- W2294622949 created "2016-06-24" @default.
- W2294622949 creator A5018866413 @default.
- W2294622949 creator A5022963784 @default.
- W2294622949 creator A5024153474 @default.
- W2294622949 creator A5062027901 @default.
- W2294622949 creator A5072713767 @default.
- W2294622949 date "2017-06-01" @default.
- W2294622949 modified "2023-10-04" @default.
- W2294622949 title "Exponential Decay of Reconstruction Error From Binary Measurements of Sparse Signals" @default.
- W2294622949 cites W143004564 @default.
- W2294622949 cites W1974466705 @default.
- W2294622949 cites W1976318178 @default.
- W2294622949 cites W1977601760 @default.
- W2294622949 cites W2008917987 @default.
- W2294622949 cites W2036850226 @default.
- W2294622949 cites W2055064119 @default.
- W2294622949 cites W2060256514 @default.
- W2294622949 cites W2060430274 @default.
- W2294622949 cites W2068693086 @default.
- W2294622949 cites W2076318216 @default.
- W2294622949 cites W2098573079 @default.
- W2294622949 cites W2106398669 @default.
- W2294622949 cites W2112038498 @default.
- W2294622949 cites W2117790027 @default.
- W2294622949 cites W2128804753 @default.
- W2294622949 cites W2137990311 @default.
- W2294622949 cites W2140532408 @default.
- W2294622949 cites W2147125026 @default.
- W2294622949 cites W2148041990 @default.
- W2294622949 cites W2150991625 @default.
- W2294622949 cites W2152981240 @default.
- W2294622949 cites W2154423986 @default.
- W2294622949 cites W2161610387 @default.
- W2294622949 cites W2167657065 @default.
- W2294622949 cites W2570531678 @default.
- W2294622949 cites W2950190315 @default.
- W2294622949 cites W2963302510 @default.
- W2294622949 cites W2963617998 @default.
- W2294622949 cites W2963981973 @default.
- W2294622949 cites W2964003909 @default.
- W2294622949 cites W2964200481 @default.
- W2294622949 cites W2964253263 @default.
- W2294622949 cites W2964322027 @default.
- W2294622949 cites W3098888484 @default.
- W2294622949 cites W3102942031 @default.
- W2294622949 cites W3105629641 @default.
- W2294622949 cites W3145937384 @default.
- W2294622949 cites W4300263211 @default.
- W2294622949 doi "https://doi.org/10.1109/tit.2017.2688381" @default.
- W2294622949 hasPublicationYear "2017" @default.
- W2294622949 type Work @default.
- W2294622949 sameAs 2294622949 @default.
- W2294622949 citedByCount "86" @default.
- W2294622949 countsByYear W22946229492015 @default.
- W2294622949 countsByYear W22946229492016 @default.
- W2294622949 countsByYear W22946229492017 @default.
- W2294622949 countsByYear W22946229492018 @default.
- W2294622949 countsByYear W22946229492019 @default.
- W2294622949 countsByYear W22946229492020 @default.
- W2294622949 countsByYear W22946229492021 @default.
- W2294622949 countsByYear W22946229492022 @default.
- W2294622949 countsByYear W22946229492023 @default.
- W2294622949 crossrefType "journal-article" @default.
- W2294622949 hasAuthorship W2294622949A5018866413 @default.
- W2294622949 hasAuthorship W2294622949A5022963784 @default.
- W2294622949 hasAuthorship W2294622949A5024153474 @default.
- W2294622949 hasAuthorship W2294622949A5062027901 @default.
- W2294622949 hasAuthorship W2294622949A5072713767 @default.
- W2294622949 hasBestOaLocation W22946229491 @default.
- W2294622949 hasConcept C104267543 @default.
- W2294622949 hasConcept C11413529 @default.
- W2294622949 hasConcept C115961682 @default.
- W2294622949 hasConcept C124851039 @default.
- W2294622949 hasConcept C134306372 @default.
- W2294622949 hasConcept C136886441 @default.
- W2294622949 hasConcept C144024400 @default.
- W2294622949 hasConcept C151376022 @default.
- W2294622949 hasConcept C154945302 @default.
- W2294622949 hasConcept C191178318 @default.
- W2294622949 hasConcept C19165224 @default.
- W2294622949 hasConcept C197323446 @default.
- W2294622949 hasConcept C2776257435 @default.
- W2294622949 hasConcept C28855332 @default.
- W2294622949 hasConcept C31258907 @default.
- W2294622949 hasConcept C33923547 @default.
- W2294622949 hasConcept C41008148 @default.
- W2294622949 hasConcept C48372109 @default.
- W2294622949 hasConcept C70958404 @default.
- W2294622949 hasConcept C84462506 @default.
- W2294622949 hasConcept C9390403 @default.
- W2294622949 hasConcept C94375191 @default.
- W2294622949 hasConceptScore W2294622949C104267543 @default.
- W2294622949 hasConceptScore W2294622949C11413529 @default.
- W2294622949 hasConceptScore W2294622949C115961682 @default.
- W2294622949 hasConceptScore W2294622949C124851039 @default.
- W2294622949 hasConceptScore W2294622949C134306372 @default.
- W2294622949 hasConceptScore W2294622949C136886441 @default.