Matches in SemOpenAlex for { <https://semopenalex.org/work/W2294782292> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2294782292 abstract "Many emerging supercomputers and future exa-scale computing machines require accelerator-based GPU computing architectures for boosting their computing performances. CUDA is one of the widely applied GPGPU parallel computing platform for those architectures owing to its better performance for certain scientific applications. However, the emerging rise in the development of CUDA applications from various scientific domains, such as, bioinformatics, HEP, and so forth, has urged the need for tools that identify optimal application parameters and the other GPGPU architecture metrics, including work group size, work item, memory utilization, and so forth. In fact, the tuning process might end up with several executions of various possible code variants.This paper proposed Dynamic Regression models, namely, Dynamic Random Forests (DynRFM), Dynamic Support Vector Machines (DynSVM), and Dynamic Linear Regression Models (Dyn LRM) for the energy/performance prediction of the code variants of CUDA applications. The prediction was based on the application parameters and the performance metrics of applications, such as, number of instructions, memory issues, and so forth. In order to obtain energy/performance measurements for CUDA applications, EACudaLib (a monitoring library implemented in EnergyAnalyzer tool) was developed. In addition, the proposed Dynamic Regression models were compared to the classical regression models, such as, RFM, SVM, and LRM. The validation results of the proposed dynamic regression models, when tested with the different problem sizes of Nbody and Particle CUDA simulations, manifested the energy/performance prediction improvement of over 50.26 to 61.23 percentages." @default.
- W2294782292 created "2016-06-24" @default.
- W2294782292 creator A5000989793 @default.
- W2294782292 creator A5028874685 @default.
- W2294782292 creator A5035583161 @default.
- W2294782292 date "2016-02-18" @default.
- W2294782292 modified "2023-09-25" @default.
- W2294782292 title "Energy and Performance Prediction of CUDA Applications using Dynamic Regression Models" @default.
- W2294782292 cites W102800333 @default.
- W2294782292 cites W1561857102 @default.
- W2294782292 cites W1588915715 @default.
- W2294782292 cites W1660085994 @default.
- W2294782292 cites W1947563839 @default.
- W2294782292 cites W1959213525 @default.
- W2294782292 cites W1966128391 @default.
- W2294782292 cites W1966629366 @default.
- W2294782292 cites W1971291159 @default.
- W2294782292 cites W1976139981 @default.
- W2294782292 cites W1992930088 @default.
- W2294782292 cites W2003906520 @default.
- W2294782292 cites W2025437939 @default.
- W2294782292 cites W2028425870 @default.
- W2294782292 cites W2030553163 @default.
- W2294782292 cites W2055129258 @default.
- W2294782292 cites W2058761126 @default.
- W2294782292 cites W2060099632 @default.
- W2294782292 cites W2093843662 @default.
- W2294782292 cites W2096813338 @default.
- W2294782292 cites W2099891946 @default.
- W2294782292 cites W2106946528 @default.
- W2294782292 cites W2128022558 @default.
- W2294782292 cites W2134101883 @default.
- W2294782292 cites W2135682468 @default.
- W2294782292 cites W2142769604 @default.
- W2294782292 cites W2151361215 @default.
- W2294782292 cites W2153667821 @default.
- W2294782292 cites W2155642486 @default.
- W2294782292 cites W2156697773 @default.
- W2294782292 cites W2168976537 @default.
- W2294782292 cites W2170059648 @default.
- W2294782292 cites W4243412784 @default.
- W2294782292 cites W4246740707 @default.
- W2294782292 doi "https://doi.org/10.1145/2856636.2856643" @default.
- W2294782292 hasPublicationYear "2016" @default.
- W2294782292 type Work @default.
- W2294782292 sameAs 2294782292 @default.
- W2294782292 citedByCount "1" @default.
- W2294782292 countsByYear W22947822922017 @default.
- W2294782292 crossrefType "proceedings-article" @default.
- W2294782292 hasAuthorship W2294782292A5000989793 @default.
- W2294782292 hasAuthorship W2294782292A5028874685 @default.
- W2294782292 hasAuthorship W2294782292A5035583161 @default.
- W2294782292 hasConcept C105795698 @default.
- W2294782292 hasConcept C119857082 @default.
- W2294782292 hasConcept C152877465 @default.
- W2294782292 hasConcept C173608175 @default.
- W2294782292 hasConcept C186370098 @default.
- W2294782292 hasConcept C2778119891 @default.
- W2294782292 hasConcept C33923547 @default.
- W2294782292 hasConcept C41008148 @default.
- W2294782292 hasConcept C83546350 @default.
- W2294782292 hasConceptScore W2294782292C105795698 @default.
- W2294782292 hasConceptScore W2294782292C119857082 @default.
- W2294782292 hasConceptScore W2294782292C152877465 @default.
- W2294782292 hasConceptScore W2294782292C173608175 @default.
- W2294782292 hasConceptScore W2294782292C186370098 @default.
- W2294782292 hasConceptScore W2294782292C2778119891 @default.
- W2294782292 hasConceptScore W2294782292C33923547 @default.
- W2294782292 hasConceptScore W2294782292C41008148 @default.
- W2294782292 hasConceptScore W2294782292C83546350 @default.
- W2294782292 hasLocation W22947822921 @default.
- W2294782292 hasOpenAccess W2294782292 @default.
- W2294782292 hasPrimaryLocation W22947822921 @default.
- W2294782292 hasRelatedWork W112793021 @default.
- W2294782292 hasRelatedWork W2017579069 @default.
- W2294782292 hasRelatedWork W2030551598 @default.
- W2294782292 hasRelatedWork W2090121768 @default.
- W2294782292 hasRelatedWork W2184497179 @default.
- W2294782292 hasRelatedWork W2306641587 @default.
- W2294782292 hasRelatedWork W2357804788 @default.
- W2294782292 hasRelatedWork W2383162333 @default.
- W2294782292 hasRelatedWork W2982613029 @default.
- W2294782292 hasRelatedWork W4294686023 @default.
- W2294782292 isParatext "false" @default.
- W2294782292 isRetracted "false" @default.
- W2294782292 magId "2294782292" @default.
- W2294782292 workType "article" @default.