Matches in SemOpenAlex for { <https://semopenalex.org/work/W229484868> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W229484868 abstract "Wearable sensing systems are becoming widely used for a variety of applications including sports, entertainment, and the military. These systems have recently enabled a variety of medical monitoring and diagnostic applications. Such sensing systems have high potential to significantly improve the quality of life for large segments of the population and enable conceptually new types of applications. However, various research challenges including energy sensitivity and semantic complexity must be addressed before these devices can reach their full potential in improving our lives. The need for multiple sensors, high frequency sampling and constant monitoring leads these systems to be power-hungry and expensive with a short operation lifetime. In addition these systems generate a massive amount of data, where designing efficient and effective data mining algorithms to interpret and analyze the data is very costly due to field experts' involvement. This dissertation presents a methodology that takes advantage of contextual and semantic properties in human physiological behavior to enable efficient design and optimization of such systems from the data and information point of view. The methodology uses combinatorial modeling and simultaneous minimization to reduce the wireless communication and local processing power consumption. The effectiveness of this technique is shown on an insole instrumented with 99 pressure sensors placed in each shoe, which is used for human gait analysis. Further, the proposed methodology is used to design unsupervised data mining techniques to extract information such as frequent or rare events and patterns from collected multi-dimensional time series data of wearable sensing devices, where high level of noise and uncertainty is inherent. This approach transforms multi-dimensional time series data to combinatorial space and constructs behavior models, which is used for frequent and rare event detection and pattern classification. The effectiveness of this method is demonstrated by applying this technique to discovery and classification of frequent human activities and abnormalities." @default.
- W229484868 created "2016-06-24" @default.
- W229484868 creator A5020002833 @default.
- W229484868 creator A5078132977 @default.
- W229484868 date "2012-01-01" @default.
- W229484868 modified "2023-09-23" @default.
- W229484868 title "Behavior-aware design, optimization and information mining in wearable sensing systems" @default.
- W229484868 hasPublicationYear "2012" @default.
- W229484868 type Work @default.
- W229484868 sameAs 229484868 @default.
- W229484868 citedByCount "0" @default.
- W229484868 crossrefType "journal-article" @default.
- W229484868 hasAuthorship W229484868A5020002833 @default.
- W229484868 hasAuthorship W229484868A5078132977 @default.
- W229484868 hasConcept C119857082 @default.
- W229484868 hasConcept C124101348 @default.
- W229484868 hasConcept C136197465 @default.
- W229484868 hasConcept C149635348 @default.
- W229484868 hasConcept C150594956 @default.
- W229484868 hasConcept C154945302 @default.
- W229484868 hasConcept C2522767166 @default.
- W229484868 hasConcept C41008148 @default.
- W229484868 hasConcept C54290928 @default.
- W229484868 hasConcept C79403827 @default.
- W229484868 hasConceptScore W229484868C119857082 @default.
- W229484868 hasConceptScore W229484868C124101348 @default.
- W229484868 hasConceptScore W229484868C136197465 @default.
- W229484868 hasConceptScore W229484868C149635348 @default.
- W229484868 hasConceptScore W229484868C150594956 @default.
- W229484868 hasConceptScore W229484868C154945302 @default.
- W229484868 hasConceptScore W229484868C2522767166 @default.
- W229484868 hasConceptScore W229484868C41008148 @default.
- W229484868 hasConceptScore W229484868C54290928 @default.
- W229484868 hasConceptScore W229484868C79403827 @default.
- W229484868 hasLocation W2294848681 @default.
- W229484868 hasOpenAccess W229484868 @default.
- W229484868 hasPrimaryLocation W2294848681 @default.
- W229484868 hasRelatedWork W1907935886 @default.
- W229484868 hasRelatedWork W1971037193 @default.
- W229484868 hasRelatedWork W2036139105 @default.
- W229484868 hasRelatedWork W2081960899 @default.
- W229484868 hasRelatedWork W2135192303 @default.
- W229484868 hasRelatedWork W2263400063 @default.
- W229484868 hasRelatedWork W2500941883 @default.
- W229484868 hasRelatedWork W2584011886 @default.
- W229484868 hasRelatedWork W2751136411 @default.
- W229484868 hasRelatedWork W2754566557 @default.
- W229484868 hasRelatedWork W2781243672 @default.
- W229484868 hasRelatedWork W2807963368 @default.
- W229484868 hasRelatedWork W2891135006 @default.
- W229484868 hasRelatedWork W2900173088 @default.
- W229484868 hasRelatedWork W2901924211 @default.
- W229484868 hasRelatedWork W2950174485 @default.
- W229484868 hasRelatedWork W2958873474 @default.
- W229484868 hasRelatedWork W3020992052 @default.
- W229484868 hasRelatedWork W3202609043 @default.
- W229484868 hasRelatedWork W2187436517 @default.
- W229484868 isParatext "false" @default.
- W229484868 isRetracted "false" @default.
- W229484868 magId "229484868" @default.
- W229484868 workType "article" @default.