Matches in SemOpenAlex for { <https://semopenalex.org/work/W2294876565> ?p ?o ?g. }
- W2294876565 endingPage "100" @default.
- W2294876565 startingPage "89" @default.
- W2294876565 abstract "The single objective quadratic multiple knapsack problem (QMKP) is a useful model to formulate a number of practical problems. However, it is not suitable for situations where more than one objective needs to be considered. In this paper, we extend the single objective QMKP to the bi-objective case such that we simultaneously maximize the total profit of the items packed into the knapsacks and the ’makespan’ (the gain of the least profit knapsack). Given the imposing computational challenge, we propose a hybrid two-stage (HTS) algorithm to approximate the Pareto front of the bi-objective QMKP. HTS combines two different and complementary search methods — scalarizing memetic search (first stage) and Pareto local search (second stage). Experimental assessments on a set of 60 problem instances show that HTS dominates a standard multi-objective evolutionary algorithm (NSGA II), and two simplified variants of HTS. We also present a comparison with two state-of-the-art algorithms for the single objective QMKP to assess the quality of the extreme solutions of the approximated Pareto front." @default.
- W2294876565 created "2016-06-24" @default.
- W2294876565 creator A5013675255 @default.
- W2294876565 creator A5016332970 @default.
- W2294876565 date "2016-04-01" @default.
- W2294876565 modified "2023-10-15" @default.
- W2294876565 title "The bi-objective quadratic multiple knapsack problem: Model and heuristics" @default.
- W2294876565 cites W1971967801 @default.
- W2294876565 cites W1978090048 @default.
- W2294876565 cites W1989607775 @default.
- W2294876565 cites W1990912193 @default.
- W2294876565 cites W2000151189 @default.
- W2294876565 cites W2002357639 @default.
- W2294876565 cites W2005184489 @default.
- W2294876565 cites W2014691946 @default.
- W2294876565 cites W2024911991 @default.
- W2294876565 cites W2039195892 @default.
- W2294876565 cites W2043776993 @default.
- W2294876565 cites W2046984822 @default.
- W2294876565 cites W2050997304 @default.
- W2294876565 cites W2082782506 @default.
- W2294876565 cites W2085143124 @default.
- W2294876565 cites W2093586902 @default.
- W2294876565 cites W2098907614 @default.
- W2294876565 cites W2108968575 @default.
- W2294876565 cites W2116872250 @default.
- W2294876565 cites W2117762792 @default.
- W2294876565 cites W2126105956 @default.
- W2294876565 cites W2130894872 @default.
- W2294876565 cites W2143381319 @default.
- W2294876565 cites W2193153428 @default.
- W2294876565 cites W2612345312 @default.
- W2294876565 cites W262484865 @default.
- W2294876565 doi "https://doi.org/10.1016/j.knosys.2016.01.014" @default.
- W2294876565 hasPublicationYear "2016" @default.
- W2294876565 type Work @default.
- W2294876565 sameAs 2294876565 @default.
- W2294876565 citedByCount "15" @default.
- W2294876565 countsByYear W22948765652016 @default.
- W2294876565 countsByYear W22948765652017 @default.
- W2294876565 countsByYear W22948765652019 @default.
- W2294876565 countsByYear W22948765652020 @default.
- W2294876565 countsByYear W22948765652021 @default.
- W2294876565 countsByYear W22948765652022 @default.
- W2294876565 countsByYear W22948765652023 @default.
- W2294876565 crossrefType "journal-article" @default.
- W2294876565 hasAuthorship W2294876565A5013675255 @default.
- W2294876565 hasAuthorship W2294876565A5016332970 @default.
- W2294876565 hasBestOaLocation W22948765652 @default.
- W2294876565 hasConcept C113138325 @default.
- W2294876565 hasConcept C126255220 @default.
- W2294876565 hasConcept C127705205 @default.
- W2294876565 hasConcept C129844170 @default.
- W2294876565 hasConcept C137635306 @default.
- W2294876565 hasConcept C159149176 @default.
- W2294876565 hasConcept C177264268 @default.
- W2294876565 hasConcept C199360897 @default.
- W2294876565 hasConcept C206729178 @default.
- W2294876565 hasConcept C2524010 @default.
- W2294876565 hasConcept C31258907 @default.
- W2294876565 hasConcept C33923547 @default.
- W2294876565 hasConcept C35129592 @default.
- W2294876565 hasConcept C41008148 @default.
- W2294876565 hasConcept C55416958 @default.
- W2294876565 hasConcept C68781425 @default.
- W2294876565 hasConcept C74172769 @default.
- W2294876565 hasConcept C94569963 @default.
- W2294876565 hasConceptScore W2294876565C113138325 @default.
- W2294876565 hasConceptScore W2294876565C126255220 @default.
- W2294876565 hasConceptScore W2294876565C127705205 @default.
- W2294876565 hasConceptScore W2294876565C129844170 @default.
- W2294876565 hasConceptScore W2294876565C137635306 @default.
- W2294876565 hasConceptScore W2294876565C159149176 @default.
- W2294876565 hasConceptScore W2294876565C177264268 @default.
- W2294876565 hasConceptScore W2294876565C199360897 @default.
- W2294876565 hasConceptScore W2294876565C206729178 @default.
- W2294876565 hasConceptScore W2294876565C2524010 @default.
- W2294876565 hasConceptScore W2294876565C31258907 @default.
- W2294876565 hasConceptScore W2294876565C33923547 @default.
- W2294876565 hasConceptScore W2294876565C35129592 @default.
- W2294876565 hasConceptScore W2294876565C41008148 @default.
- W2294876565 hasConceptScore W2294876565C55416958 @default.
- W2294876565 hasConceptScore W2294876565C68781425 @default.
- W2294876565 hasConceptScore W2294876565C74172769 @default.
- W2294876565 hasConceptScore W2294876565C94569963 @default.
- W2294876565 hasFunder F4320321001 @default.
- W2294876565 hasLocation W22948765651 @default.
- W2294876565 hasLocation W22948765652 @default.
- W2294876565 hasLocation W22948765653 @default.
- W2294876565 hasLocation W22948765654 @default.
- W2294876565 hasOpenAccess W2294876565 @default.
- W2294876565 hasPrimaryLocation W22948765651 @default.
- W2294876565 hasRelatedWork W1563728692 @default.
- W2294876565 hasRelatedWork W1884730587 @default.
- W2294876565 hasRelatedWork W2035852320 @default.
- W2294876565 hasRelatedWork W2070962221 @default.
- W2294876565 hasRelatedWork W2127459836 @default.
- W2294876565 hasRelatedWork W2162974421 @default.