Matches in SemOpenAlex for { <https://semopenalex.org/work/W2294889300> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2294889300 endingPage "126" @default.
- W2294889300 startingPage "114" @default.
- W2294889300 abstract "The duration of freeway traffic accidents duration is an important factor, which affects traffic congestion, environmental pollution, and secondary accidents. Among previous studies, the M5P algorithm has been shown to be an effective tool for predicting incident duration. M5P builds a tree-based model, like the traditional classification and regression tree (CART) method, but with multiple linear regression models as its leaves. The problem with M5P for accident duration prediction, however, is that whereas linear regression assumes that the conditional distribution of accident durations is normally distributed, the distribution for a “time-to-an-event” is almost certainly nonsymmetrical. A hazard-based duration model (HBDM) is a better choice for this kind of a “time-to-event” modeling scenario, and given this, HBDMs have been previously applied to analyze and predict traffic accidents duration. Previous research, however, has not yet applied HBDMs for accident duration prediction, in association with clustering or classification of the dataset to minimize data heterogeneity. The current paper proposes a novel approach for accident duration prediction, which improves on the original M5P tree algorithm through the construction of a M5P-HBDM model, in which the leaves of the M5P tree model are HBDMs instead of linear regression models. Such a model offers the advantage of minimizing data heterogeneity through dataset classification, and avoids the need for the incorrect assumption of normality for traffic accident durations. The proposed model was then tested on two freeway accident datasets. For each dataset, the first 500 records were used to train the following three models: (1) an M5P tree; (2) a HBDM; and (3) the proposed M5P-HBDM, and the remainder of data were used for testing. The results show that the proposed M5P-HBDM managed to identify more significant and meaningful variables than either M5P or HBDMs. Moreover, the M5P-HBDM had the lowest overall mean absolute percentage error (MAPE)." @default.
- W2294889300 created "2016-06-24" @default.
- W2294889300 creator A5035431016 @default.
- W2294889300 creator A5046225712 @default.
- W2294889300 creator A5048326379 @default.
- W2294889300 date "2016-06-01" @default.
- W2294889300 modified "2023-10-14" @default.
- W2294889300 title "A combined M5P tree and hazard-based duration model for predicting urban freeway traffic accident durations" @default.
- W2294889300 cites W1965036911 @default.
- W2294889300 cites W197184986 @default.
- W2294889300 cites W1994231679 @default.
- W2294889300 cites W1995840715 @default.
- W2294889300 cites W2010039425 @default.
- W2294889300 cites W2016630489 @default.
- W2294889300 cites W2023171043 @default.
- W2294889300 cites W2035481685 @default.
- W2294889300 cites W2036619968 @default.
- W2294889300 cites W2051350735 @default.
- W2294889300 cites W2056425734 @default.
- W2294889300 cites W2082845493 @default.
- W2294889300 cites W2084591067 @default.
- W2294889300 cites W2092568949 @default.
- W2294889300 cites W2106220766 @default.
- W2294889300 cites W2132735659 @default.
- W2294889300 cites W2135310819 @default.
- W2294889300 cites W2151744441 @default.
- W2294889300 cites W2151772631 @default.
- W2294889300 doi "https://doi.org/10.1016/j.aap.2016.03.001" @default.
- W2294889300 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26974028" @default.
- W2294889300 hasPublicationYear "2016" @default.
- W2294889300 type Work @default.
- W2294889300 sameAs 2294889300 @default.
- W2294889300 citedByCount "62" @default.
- W2294889300 countsByYear W22948893002016 @default.
- W2294889300 countsByYear W22948893002017 @default.
- W2294889300 countsByYear W22948893002018 @default.
- W2294889300 countsByYear W22948893002019 @default.
- W2294889300 countsByYear W22948893002020 @default.
- W2294889300 countsByYear W22948893002021 @default.
- W2294889300 countsByYear W22948893002022 @default.
- W2294889300 countsByYear W22948893002023 @default.
- W2294889300 crossrefType "journal-article" @default.
- W2294889300 hasAuthorship W2294889300A5035431016 @default.
- W2294889300 hasAuthorship W2294889300A5046225712 @default.
- W2294889300 hasAuthorship W2294889300A5048326379 @default.
- W2294889300 hasConcept C105795698 @default.
- W2294889300 hasConcept C112758219 @default.
- W2294889300 hasConcept C119857082 @default.
- W2294889300 hasConcept C124101348 @default.
- W2294889300 hasConcept C124952713 @default.
- W2294889300 hasConcept C142362112 @default.
- W2294889300 hasConcept C152877465 @default.
- W2294889300 hasConcept C178790620 @default.
- W2294889300 hasConcept C185592680 @default.
- W2294889300 hasConcept C33923547 @default.
- W2294889300 hasConcept C41008148 @default.
- W2294889300 hasConcept C48921125 @default.
- W2294889300 hasConcept C49261128 @default.
- W2294889300 hasConcept C84525736 @default.
- W2294889300 hasConceptScore W2294889300C105795698 @default.
- W2294889300 hasConceptScore W2294889300C112758219 @default.
- W2294889300 hasConceptScore W2294889300C119857082 @default.
- W2294889300 hasConceptScore W2294889300C124101348 @default.
- W2294889300 hasConceptScore W2294889300C124952713 @default.
- W2294889300 hasConceptScore W2294889300C142362112 @default.
- W2294889300 hasConceptScore W2294889300C152877465 @default.
- W2294889300 hasConceptScore W2294889300C178790620 @default.
- W2294889300 hasConceptScore W2294889300C185592680 @default.
- W2294889300 hasConceptScore W2294889300C33923547 @default.
- W2294889300 hasConceptScore W2294889300C41008148 @default.
- W2294889300 hasConceptScore W2294889300C48921125 @default.
- W2294889300 hasConceptScore W2294889300C49261128 @default.
- W2294889300 hasConceptScore W2294889300C84525736 @default.
- W2294889300 hasLocation W22948893001 @default.
- W2294889300 hasLocation W22948893002 @default.
- W2294889300 hasOpenAccess W2294889300 @default.
- W2294889300 hasPrimaryLocation W22948893001 @default.
- W2294889300 hasRelatedWork W1915333409 @default.
- W2294889300 hasRelatedWork W1976866108 @default.
- W2294889300 hasRelatedWork W2092994918 @default.
- W2294889300 hasRelatedWork W2118804519 @default.
- W2294889300 hasRelatedWork W2358821765 @default.
- W2294889300 hasRelatedWork W2390006526 @default.
- W2294889300 hasRelatedWork W2610868774 @default.
- W2294889300 hasRelatedWork W3123401175 @default.
- W2294889300 hasRelatedWork W3215700490 @default.
- W2294889300 hasRelatedWork W3216594821 @default.
- W2294889300 hasVolume "91" @default.
- W2294889300 isParatext "false" @default.
- W2294889300 isRetracted "false" @default.
- W2294889300 magId "2294889300" @default.
- W2294889300 workType "article" @default.