Matches in SemOpenAlex for { <https://semopenalex.org/work/W2294994072> ?p ?o ?g. }
- W2294994072 abstract "Prediction of Earnings Per Share (EPS) is the fundamental problem in finance industry. Various Data Mining technologies have been widely used in computational finance. This research work aims to predict the future EPS with previous values through the use of data mining technologies, thus to provide decision makers a reference or evidence for their economic strategies and business activity. We created three models LR, RBF and MLP for the regression problem. Our experiments with these models were carried out on the real datasets provided by a software company. The performance assessment was based on Correlation Coefficient and Root Mean Squared Error. These algorithms were validated with the data of six different companies. Some differences between the models have been observed. In most cases, Linear Regression and Multilayer Perceptron are effectively capable of predicting the future EPS. But for the high nonlinear data, MLP gives better performance." @default.
- W2294994072 created "2016-06-24" @default.
- W2294994072 creator A5020000412 @default.
- W2294994072 creator A5028506135 @default.
- W2294994072 creator A5043413211 @default.
- W2294994072 date "2015-01-01" @default.
- W2294994072 modified "2023-09-22" @default.
- W2294994072 title "Prediction of Earnings per Share for Industry" @default.
- W2294994072 cites W1965103631 @default.
- W2294994072 cites W1970277521 @default.
- W2294994072 cites W1971141266 @default.
- W2294994072 cites W1973704036 @default.
- W2294994072 cites W1980458013 @default.
- W2294994072 cites W1980836123 @default.
- W2294994072 cites W1983484451 @default.
- W2294994072 cites W1985177160 @default.
- W2294994072 cites W1997734726 @default.
- W2294994072 cites W1998006504 @default.
- W2294994072 cites W2004473119 @default.
- W2294994072 cites W2005424446 @default.
- W2294994072 cites W2021938316 @default.
- W2294994072 cites W2025544839 @default.
- W2294994072 cites W2030655795 @default.
- W2294994072 cites W2036927554 @default.
- W2294994072 cites W2037657068 @default.
- W2294994072 cites W2041604057 @default.
- W2294994072 cites W2044133943 @default.
- W2294994072 cites W2045001586 @default.
- W2294994072 cites W2051815811 @default.
- W2294994072 cites W2059852492 @default.
- W2294994072 cites W2064157633 @default.
- W2294994072 cites W2079690858 @default.
- W2294994072 cites W2083526783 @default.
- W2294994072 cites W2084072817 @default.
- W2294994072 cites W2084216799 @default.
- W2294994072 cites W2085210082 @default.
- W2294994072 cites W2085708398 @default.
- W2294994072 cites W2090464137 @default.
- W2294994072 cites W2093195672 @default.
- W2294994072 cites W2103997983 @default.
- W2294994072 cites W2113601760 @default.
- W2294994072 cites W2124098825 @default.
- W2294994072 cites W2132966115 @default.
- W2294994072 cites W2139322017 @default.
- W2294994072 cites W2139748547 @default.
- W2294994072 cites W2155744005 @default.
- W2294994072 cites W2159708804 @default.
- W2294994072 cites W2163598528 @default.
- W2294994072 cites W2319935791 @default.
- W2294994072 cites W2497922263 @default.
- W2294994072 cites W3020617567 @default.
- W2294994072 cites W3123653015 @default.
- W2294994072 cites W57634353 @default.
- W2294994072 cites W2336970615 @default.
- W2294994072 cites W2790654100 @default.
- W2294994072 doi "https://doi.org/10.5220/0005616604250432" @default.
- W2294994072 hasPublicationYear "2015" @default.
- W2294994072 type Work @default.
- W2294994072 sameAs 2294994072 @default.
- W2294994072 citedByCount "1" @default.
- W2294994072 countsByYear W22949940722020 @default.
- W2294994072 crossrefType "proceedings-article" @default.
- W2294994072 hasAuthorship W2294994072A5020000412 @default.
- W2294994072 hasAuthorship W2294994072A5028506135 @default.
- W2294994072 hasAuthorship W2294994072A5043413211 @default.
- W2294994072 hasBestOaLocation W22949940721 @default.
- W2294994072 hasConcept C105795698 @default.
- W2294994072 hasConcept C119857082 @default.
- W2294994072 hasConcept C121955636 @default.
- W2294994072 hasConcept C124101348 @default.
- W2294994072 hasConcept C139945424 @default.
- W2294994072 hasConcept C144133560 @default.
- W2294994072 hasConcept C154945302 @default.
- W2294994072 hasConcept C167085575 @default.
- W2294994072 hasConcept C179717631 @default.
- W2294994072 hasConcept C199360897 @default.
- W2294994072 hasConcept C2777904410 @default.
- W2294994072 hasConcept C2780092901 @default.
- W2294994072 hasConcept C2781426361 @default.
- W2294994072 hasConcept C33923547 @default.
- W2294994072 hasConcept C41008148 @default.
- W2294994072 hasConcept C45804977 @default.
- W2294994072 hasConcept C48921125 @default.
- W2294994072 hasConcept C50644808 @default.
- W2294994072 hasConcept C67186912 @default.
- W2294994072 hasConcept C77088390 @default.
- W2294994072 hasConceptScore W2294994072C105795698 @default.
- W2294994072 hasConceptScore W2294994072C119857082 @default.
- W2294994072 hasConceptScore W2294994072C121955636 @default.
- W2294994072 hasConceptScore W2294994072C124101348 @default.
- W2294994072 hasConceptScore W2294994072C139945424 @default.
- W2294994072 hasConceptScore W2294994072C144133560 @default.
- W2294994072 hasConceptScore W2294994072C154945302 @default.
- W2294994072 hasConceptScore W2294994072C167085575 @default.
- W2294994072 hasConceptScore W2294994072C179717631 @default.
- W2294994072 hasConceptScore W2294994072C199360897 @default.
- W2294994072 hasConceptScore W2294994072C2777904410 @default.
- W2294994072 hasConceptScore W2294994072C2780092901 @default.
- W2294994072 hasConceptScore W2294994072C2781426361 @default.
- W2294994072 hasConceptScore W2294994072C33923547 @default.