Matches in SemOpenAlex for { <https://semopenalex.org/work/W2295049360> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2295049360 abstract "Data has become the currency of this era and it is continuing to massively increase in size and generation rate. Large data generated out of organisations' e-transactions or individuals through social networks could be of a great value when analysed properly. This research presents an implementation of a sentiment analyser for Twitter's tweets which is one of the biggest public and freely available big data sources. It analyses Arabic, Saudi dialect tweets to extract sentiments toward a specific topic. It used a dataset consisting of 3000 tweets collected from Twitter. The collected tweets were analysed using two machine learning approaches, supervised which is trained with the dataset collected and the proposed hybrid learning which is trained on a single words dictionary. Two algorithms are used, Support Vector Machine (SVM) and K-Nearest Neighbors (KNN). The obtained results by the cross validation on the same dataset clearly confirm the superiority of the hybrid learning approach over the supervised approach." @default.
- W2295049360 created "2016-06-24" @default.
- W2295049360 creator A5070382931 @default.
- W2295049360 creator A5043097172 @default.
- W2295049360 creator A5079213747 @default.
- W2295049360 date "2015-01-01" @default.
- W2295049360 modified "2023-10-01" @default.
- W2295049360 title "Arabic Sentiment Analysis using WEKA a Hybrid Learning Approach" @default.
- W2295049360 cites W1570448133 @default.
- W2295049360 cites W1698552978 @default.
- W2295049360 cites W172260869 @default.
- W2295049360 cites W1977180083 @default.
- W2295049360 cites W1980322675 @default.
- W2295049360 cites W1988711335 @default.
- W2295049360 cites W2000190989 @default.
- W2295049360 cites W2001807302 @default.
- W2295049360 cites W2018626394 @default.
- W2295049360 cites W2019759670 @default.
- W2295049360 cites W2026770313 @default.
- W2295049360 cites W2027871581 @default.
- W2295049360 cites W2041564642 @default.
- W2295049360 cites W2042361197 @default.
- W2295049360 cites W2043287290 @default.
- W2295049360 cites W2069616545 @default.
- W2295049360 cites W2088394786 @default.
- W2295049360 cites W2108646579 @default.
- W2295049360 cites W2131715540 @default.
- W2295049360 cites W2140190241 @default.
- W2295049360 cites W2148397383 @default.
- W2295049360 cites W2318616122 @default.
- W2295049360 cites W2520314979 @default.
- W2295049360 cites W2542085027 @default.
- W2295049360 doi "https://doi.org/10.5220/0005616004020408" @default.
- W2295049360 hasPublicationYear "2015" @default.
- W2295049360 type Work @default.
- W2295049360 sameAs 2295049360 @default.
- W2295049360 citedByCount "13" @default.
- W2295049360 countsByYear W22950493602016 @default.
- W2295049360 countsByYear W22950493602017 @default.
- W2295049360 countsByYear W22950493602018 @default.
- W2295049360 countsByYear W22950493602019 @default.
- W2295049360 countsByYear W22950493602020 @default.
- W2295049360 countsByYear W22950493602021 @default.
- W2295049360 crossrefType "proceedings-article" @default.
- W2295049360 hasAuthorship W2295049360A5043097172 @default.
- W2295049360 hasAuthorship W2295049360A5070382931 @default.
- W2295049360 hasAuthorship W2295049360A5079213747 @default.
- W2295049360 hasBestOaLocation W22950493601 @default.
- W2295049360 hasConcept C119857082 @default.
- W2295049360 hasConcept C138885662 @default.
- W2295049360 hasConcept C154945302 @default.
- W2295049360 hasConcept C41008148 @default.
- W2295049360 hasConcept C41895202 @default.
- W2295049360 hasConcept C66402592 @default.
- W2295049360 hasConcept C96455323 @default.
- W2295049360 hasConceptScore W2295049360C119857082 @default.
- W2295049360 hasConceptScore W2295049360C138885662 @default.
- W2295049360 hasConceptScore W2295049360C154945302 @default.
- W2295049360 hasConceptScore W2295049360C41008148 @default.
- W2295049360 hasConceptScore W2295049360C41895202 @default.
- W2295049360 hasConceptScore W2295049360C66402592 @default.
- W2295049360 hasConceptScore W2295049360C96455323 @default.
- W2295049360 hasLocation W22950493601 @default.
- W2295049360 hasOpenAccess W2295049360 @default.
- W2295049360 hasPrimaryLocation W22950493601 @default.
- W2295049360 hasRelatedWork W2288974521 @default.
- W2295049360 hasRelatedWork W3081766916 @default.
- W2295049360 hasRelatedWork W3107602296 @default.
- W2295049360 hasRelatedWork W3161447971 @default.
- W2295049360 hasRelatedWork W3192794374 @default.
- W2295049360 hasRelatedWork W4200526184 @default.
- W2295049360 hasRelatedWork W4281608370 @default.
- W2295049360 hasRelatedWork W4285815787 @default.
- W2295049360 hasRelatedWork W4360986142 @default.
- W2295049360 hasRelatedWork W4362613237 @default.
- W2295049360 isParatext "false" @default.
- W2295049360 isRetracted "false" @default.
- W2295049360 magId "2295049360" @default.
- W2295049360 workType "article" @default.